

Traffic Impact Assessment;

26 Elizabeth Street, Liverpool

For Binah Group 13 January 2020 parking; traffic; civil design; communication; **ptC.**

Document Control

26 Elizabeth Street, Liverpool, Traffic Impact Assessment

Issue	Date	Issue Details	Author	Reviewed	For the attention of
1	07/09/18	WIP Issue	SH/HL	AU	Mitchell Gardoll (Rothelowman)
2	09/11/18	Final Issue	SH/HL	AU	Nicola Eason (Rothelowman)
3	08/01/20	Final Issue (Response to Council & RMS Comments)	SH/HL/AP	АМ	Nicola Eason (Rothelowman)
4	10/01/20	Final Issue (Updated to incorporate Urbis comments)	HL/AP	АМ	Aris Dimos (Binah Group)
5	13/01/20	Final Issue (Updated Drawing Attachments)	HL/AP	АМ	Aris Dimos (Binah Group)

Contact

Steve Wellman

+61 2 8920 0800 steve.wellman@ptcconsultants.co

Sunny Hong

+61 2 8920 0800 sunny.hong@ptcconsultants.co

Aaron Pau

+61 2 8920 0800 aaron.pau@ptcconsultants.co

Henry Li +61 2 8920 0800 henry.li@ptcconsultants.co

COMMERCIAL IN CONFIDENCE

The information contained in this document, including any intellectual property rights arising from designs developed and documents created, is confidential and proprietary to **ptc.**

This document may only be used by the person/organisation to whom it is addressed for the stated purpose for which it is provided and must not be imparted to or reproduced, in whole or in part, by any third person without the prior written approval of a **ptc.** authorised representative. **ptc.** reserves all legal rights and remedies in relation to any infringement of its rights in respect of its intellectual property and/or confidential information.

© 2019

ptc. Suite 502, 1 James Place North Sydney NSW 2060 info@ptcconsultants.co t + 61 2 8920 0800 ptcconsultants.co

Contents

1. 2.	Executive Summary Council & RMS Comments	1 3
2.1	Council Comments	3
2.2	RMS Comments	5
3.	Introduction	8
3.1	Project Summary	8
3.2	Purpose of this Report	9
3.3	Site Context	10
3.4	Development Site	11
3.5	Development Proposal	12
4.	Existing Transport Facilities	15
4.1	Road Hierarchy	15
4.2	Public Transport	19
4.2.1	1 Train Services	19
4.2.2	2 Bus Services	20
4.3	Active Transport	23
5.	Development Traffic Assessment	24
5.1	Existing Traffic Generation	24
5.2	Development Traffic Generation	24
5.3	Surrounding Intersections	28
5.4	Traffic Surveys	28
5.5	Trip Distribution	31
5.6	Surrounding Developments	33
5.6.1	1 Westfield Shopping Centre	33
	2 Liverpool Hospital	34
5.7	Scenarios	36
5.8	SIDRA Results	36
5.8.1	5	38
	2 Elizabeth Street & Bigge Street	38
	3 Moore Street & Bigge Street	38
	4 Moore Street & George Street	38
5.9	Traffic Impact Summary	39
6.	Parking Provision	40
6.1	Planning Policy	40
6.2	Proposed Parking Provision	40
6.2.1	5	40
	2 Car Share Parking	41
	3 Accessible Parking Provision	41
	4 Bicycle Parking Provision	42
	5 End of Trip Facilities	43
6.2.6	6 Motorcycle Parking Provision	43

26 Elizabeth Street, Liverpool; Binah Group; 13 January 2020;

© Copyright; **ptc.**

6.2.7	Service Bay Provision	44	
7. /	Access and Car Park Assessment	46	
7.1	Vehicular Access & Circulation	46	
7.1.1	Proposed Laneway Access	46	
7.1.2	Signage	47	
7.1.3	Loading Dock and Basement Car Park Access	48	
7.1.4	Level 1 Car Park Access	48	
7.2	Pick-up and Drop-off Facility	49	
7.2.1	Hotel Pick-up/Drop-off Access	49	
7.3	Pedestrian Access	49	
7.4	Ramp Design	49	
7.5	Sight Distance	50	
7.6	Substation Service Vehicle Access	50	
7.7	Car Park Arrangement	51	
7.7.1	Typical Requirements	51	
7.7.2	Accessible Parking	52	
7.7.3	Headroom Clearance	52	
7.7.4	Bicycle Parking	53	
7.7.5	Motorcycle Spaces	53	
7.7.6	Loading Dock	53	
8. (Conclusion	54	
Attachr	nent 1 Architectural Plans	56	
Attachr	ment 2 SIDRA Results	57	
Attachr		58	
Attachr		59	
Attachr	nent 5 Support Letter from Car Share Company	60	
	2.1 - Typical Separation Kerb by Saferoads	6	
	2.2 - Standard RMS BB Line Marking Detail	7	
-	3.1 - Site Location 3.2 - Local Land Use Map (Source: NSW Planning Viewer)	8 10	
	3.3 – Aerial View of Subject Site & Surrounds (Source: Nearmap)	11	
	3.4 - Proposed Site Plan (Source: Rothelowman)	13	
-	3.5 - Vehicular Access Arrangement (Source: Rothelowman)	13	
-	4.1 - Road Hierarchy (RMS Road Hierarchy Review)	15	
0	4.2 – Moore Street – Eastbound towards Bigge Street	16	
-	4.3 – Copeland Street – Northbound towards Elizabeth Drive 4.4 – George Street – Northbound towards Elizabeth Street	16 17	
	4.5 – Elizabeth Street – Westbound towards George Street	17	
-	4.6 – Bigge Street – Southbound towards Moore Street	18	
Figure	4.7 – Walking Catchment (800m radius from the Subject Site)	19	
	4.8 - Surrounding Bus Stops	22	
	4.9 - Surrounding Cycle Paths (Source: RMS Cycleway Finder) 5.1 - Mathad of Traval to Work - Livernaal City Worker's Place of Pacidones Chart (Sources id, prei	23	
2016)	5.1 - Method of Travel to Work – Liverpool City Worker's Place of Residence Chart (Source: id. pro	ne, 24	
-	5.2 - Method of Travel to Work – Liverpool City Worker's Place of Residence Table (Source: id.	- T	
profile,	2016)	25	
-	5.3 - Method of Travel to Work – City of Bayside Worker's Place of Residence Chart (Source: id.	o /	
profile, Figure	2016) 5.4 - Method of Travel to Work – City of Bayside Worker's Place of Residence Table (Source: id.	26	
profile, 2016) 26			

²⁶ Elizabeth Street, Liverpool; Binah Group; 13 January 2020;

Figure 5.5 - Peak Hour Traffic Volume at Elizabeth Street/ Bigge Street intersection	29
Figure 5.6 - Peak Hour Traffic Volume at Elizabeth Street/ George Street intersection	29
Figure 5.7 - Peak Hour Traffic Volume at Moore Street/George Street intersection	30
Figure 5.8 - Peak Hour Traffic Volume at Moore Street/ Bigge Street intersection	30
Figure 5.9 - AM and PM Peak Outbound Distribution	32
Figure 5.10 - AM and PM Peak Inbound Distribution	33
Figure 5.11 – Westfield Shopping Centre Traffic Volume (Weekday PM Peak)	34
Figure 5.12 – Liverpool Hospital Traffic Volume (Weekday AM Peak)	35
Figure 5.13 – Liverpool Hospital Traffic Volume (Weekday PM Peak)	35
Figure 7.1 - Vehicular Access Arrangement (Source: Rothelowman)	47
Figure 7.2 – Proposed Signage Plan	48
Table 3.1 - Unit Mix	12
Table 4.1 - Train Service Summary	20
Table 4.2 - Bus Service Summary	20
Table 5.1 - Trip Generation Summary	28
Table 5.2 – Level of Service Definitions	36
Table 5.3 - Summary of Existing and Future Traffic Conditions	37
Table 6.1 – Car Parking Provision	40
Table 6.2 - Accessible Car Parking Provision	41
Table 6.3 - Bicycle Parking Provision	42
Table 6.4 - Motorcycle Parking Provision	44
Table 6.5 - Service Bay Provision	45

1. Executive Summary

- **ptc.** has been engaged by Binah Group to prepare a Traffic Impact Assessment to accompany a Development Application (DA) to Liverpool City Council for the construction of a mixed-use development located at 26 Elizabeth Street, Liverpool. The proposal comprises the following:
 - 179 residential apartments;
 - 113 hotel rooms; and
 - 5,764m² GFA allocated to commercial premises.
- This report serves as an update to the original TIA prepared on 9th November 2018 which was submitted as part of the DA submission to Council. Section 2 details **ptc.**'s response to comments received from Liverpool City Council (LCC) and Roads and Maritime Services (RMS) in relation to traffic and parking matters associated with the subject DA (DA86/2018).
- Parking will be provided within the basement and Level 1 car parks. Parking for the residential and commercial uses are provided within the four-level basement car park, whilst hotel parking is provided within the Basement 1 and Level 1 car parks. As part of the development, a new laneway along the southern boundary of the subject site will be constructed to facilitate vehicular access to and from the site. The laneway will be constructed to provide two-way vehicular movement between Bigge and George Streets. It is noted that the construction of the new laneway will be staged, with access being provided between the subject site and Bigge Street to the east as part of this development. Upon redevelopment of the west towards George Street to provide a two-way connection between Bigge and George Streets. In terms of pedestrian connectivity, a new 1.2m wide footpath will be constructed along the northern side of the laneway to provide an east-west pedestrian link along the southern frontage of the site.
- Two driveways are proposed within the new laneway to provide access to the basement and Level 1 car parks. Furthermore, a hotel pick-up/drop off area is proposed along the eastern boundary of the site. The hotel pick-up/drop-off facility can be accessed via the new laneway and will operate in a one-way northbound direction. Hotel traffic exiting onto Elizabeth Street will be restricted to left-out only due to the close proximity to the signalised intersection located upstream on Elizabeth Street. Rat running from Bigge Street to Elizabeth Street will be prevented by the provision of a boom gate to restrict access to the pick-up/drop-off area to hotel patrons only and would be supported by appropriate signage.
- A trip generation of 126 trips in the PM peak is anticipated to have a minor impact on the surrounding road networks. Although this equates to approximately two additional vehicular trips per minute, these trips will be distributed throughout the road network and can be accommodated within the existing conditions. The SIDRA results also indicate that the development will have minimal impact on the existing road network with a marginal increase in the performance indicators at each intersection.
- In regards to parking, the development provides a total of 321 car parking spaces including 3 car share spaces. In addition to car parking, seven service bays have been provided which are proposed to be shared amongst the various users. A separate Loading Dock Management Plan (LDMP) will need to be prepared in due course to manage the shared use of the proposed service bays.
- A total of 153 bicycle parking spaces and 19 motorcycle bays have also been provided within the basement and level 1 car parks for prospective residents, visitors and staff associated with the development.

• A review of the car parking and service facility have been undertaken with reference to AS2890.1:2004, AS2890.2:2018, AS2890.3:2015 and AS2890.6:2009 and found the proposal to be generally in compliance with or meeting the intent of the relevant standards. Any non-standard elements within the design are able to be revisited and adjusted during the detailed design stage to ensure full compliance prior to issue of Construction Certification.

2. Council & RMS Comments

This section outlines **ptc.**'s response to the comments provided by Liverpool City Council and Roads and Maritime Services (RMS) in relation to the traffic and parking aspects of the Development Application (DA86/2018).

2.1 Council Comments

Comments	ptc. Response	
Item 4:		
There should be more allocation of car share spaces or at least have feasibility of converting standard carparking spaces in the future. Explore possibility of an electricity charging station.	A total of three car share spaces are proposed within the development. Of this provision, two of the car share spaces are designated for hotel use, with the remaining one designated for residential use. Notwithstanding this, there is feasibility to convert additional visitor car parking spaces to car share bays, if required in the future. In response to Council's request, the developer will	
	include car share spaces with ability to provide recharging points for electric vehicles in the future. The developer will provide conduits to the nominated spaces, to facilitate streamlined inclusion of electric charging points in the future.	
Item 8:		
Any upgrade to Warren Serviceway?	Currently there is no proposed upgrade to Warren Serviceway as part of the development. Also refer to Item 28 in relation to the proposed laneway connecting George and Bigge Streets.	
Item 24:		
The TIA needs to consider the impact of the traffic generation form the adjoining lands (as additional scenario) to get better understanding of the operation of the surrounding road network following the proposed development and the adjoining parcels of land. At the minimum, the TIA needs to consider the likely access requirements of the adjoining properties and the impact on the surrounding road network and intersection operation. The development potentials considered during the planning proposal for the precinct could serve as a starting point for this exercise.	The SIDRA model has been updated to include the potential traffic generated by the expansion of Westfield Liverpool Shopping Centre and the redevelopment of Liverpool Hospital (refer to section 5.6).	

Comments	ptc. Response
Item 25:	
The SIDRA model needs to be updated to factor in the potential traffic to be generated by the adjoining properties including their potential access requirements. The model also needs to apply the RMS set signal cycle time for the intersections, instead of the 60 seconds used by the TIA.	See response to Item 24. The SIDRA model has been updated to include a set cycle time of 120 seconds for intersections on Bigge Street and 100 seconds for intersections within Liverpool CBD.
Item 26:	
Submit a concept plan identifying the on-street parking spaces to be lost on Elizabeth Street, prior to the DA is determined.	A concept plan indicating 'No Stopping' zones are proposed (3m on the eastern side of the driveway and 6m on the western side) from the proposed vehicular crossover on Elizabeth Street. This is to allow for sufficient sight distance and manoeuvrability for exiting vehicles.
	It is anticipated that this will require a net loss of 1 metered parking space on Elizabeth Street (subject to on-site validation). This net loss includes the displacement of three (3) parking spaces for the new vehicular crossover, and a gain of two (2) parking spaces when the kerb and gutter is reinstated (further to the west).
	The potential impact associated with the net loss of one on-street parking space will be mitigated by the provision of off-street parking as part of the development, which may help relieve demand for on- street parking adjacent to the site. Furthermore, the provision of car share parking within the site also serves as a benefit to the community by providing a sustainable transport option to the public within the Liverpool CBD.
	Refer to Drawing No. CP-001 in Attachment 4.
Item 27:	1

Provide a written letter from a car share parking
company indicating their agreement to provide the
vehicles that would utilize the proposed car share
parking spaces.A letter of support from the car share operator is
provided in Attachment 5.

Item 28:

Comments	ptc. Response
The applicant should provide further information as to how the provision of the proposed laneway that will provide vehicular access to the development to be co- ordinated with the development of the adjoining properties to ensure the delivery of the complete laneway.	A new east-west laneway will be constructed along the southern boundary of the subject site to facilitate entry and egress via Bigge Street (and ultimately George Street). The construction of the laneway will be staged such that the Developer will construct the portion of the laneway between Bigge Street and the western boundary of the subject site. Upon development of the neighbouring site to the west, the laneway will be extended to George Street which will ultimately provide a two-way connection between George and Bigge Streets.
	This laneway will be approximately 8.0m in width, inclusive of a 1.2m wide pedestrian footpath on the northern side of the laneway. This results in an approximate roadway width of 6.5m between kerbs (assuming the provision of a 300mm wide kerb on the southern side of the laneway).
Item 29:	
Amended plans taking into account the issues raised in this letter including a 'No Stopping' area on the laneway, and a central median on Bigge Street to prevent right turn movements in to and out of the proposed laneway.	'No Stopping' restrictions are proposed on both sides of the proposed laneway. In order to enforce a left- in/left-out access arrangement from the laneway onto Bigge Street, ptc. recommends installing a separation kerb on Bigge Street to prevent right turn movements in and out of the proposed laneway. Given the existing constraints of the carriageway width, the installation of a separation kerb provides a suitable method of dividing the southbound and northbound traffic lanes. This can be incorporated into the existing roadway without the need for realignment or widening of the carriageway.

2.2 RMS Comments

Comments	ptc. Response
Item 1:	
Traffic generation in the planning proposal was 200- 220 vehicle trips per hour (vph) during peak times.	Restaurant has been removed from the development proposal.

Refer to Drawing No. CP-001 in Attachment 4.

Comments	ptc. Response
Submitted Traffic report indicates 116 vph with 20% discount applied to the proposed hotel and commercial areas but none for the restaurant.	
Item 2:	
Need to identify the impact of the development on the adjacent classified road network.	The SIDRA model has been updated to include the potential traffic generated by the expansion of Westfield Liverpool Shopping Centre and the redevelopment of Liverpool Hospital.
Item 3:	·
Vehicular access from proposed ROW to Bigge Street should be left-in/left-out being in close proximity to traffic signals. A central median may be required which means traffic assessment and	ptc. recommends the installation of a separation kerb to restrict any right-turn movements in and out of the proposed ROW and Bigge Street.
modelling need to be updated.	A separation kerb will mitigate the need for any road realignment or widening, whilst achieving the objective of enforcing a left-in, left-out arrangement.
	A concept drawing has been prepared incorporating the provision of a separation kerb spanning for a length of approximately 20m within the Bigge Street carriageway. Refer to Drawing No. CP-001 in Attachment 4.
	Based on the technical specifications of a typical separation kerb supplied by Saferoads, a standard separation kerb has a width of 265mm which can be accommodated within the existing double-solid dividing line marking (RMS BB-line) which has a total width of 300mm. See Figure 2.1 and Figure 2.2 for reference.
	1330 ● www.saleroads.com.au ● www.saleroads.com.au ● www.saleroads.com.au ● Figure 2.1 - Typical Separation Kerb by Saferoads

Comments	ptc. Response		
	BB 1. Replaces separation line if restricted sight distance for both directions or 0.10 2. Approach to median island or 0.10 0.10 3. Approaches to a pedestrian crossing 0.10 0.10 Figure 2.2 - Standard RMS BB Line Marking Detail 0.10		
Item 4:			
SIDRA electronic files should be submitted.	To be submitted separately.		
Item 5:			
Network capacity at the Bigge St/Elizabeth St and George St/Elizabeth St intersections are already constrained and requires additional uplift will further reduce capacity and level of service. RMS requires further information regarding vehicle and pedestrian cycle phasing arrangements and intersection lane layouts used in the SIDRA traffic modelling.	SIDRA model to be submitted separately.		
Item 6:			
RMS advises that set cycle times at Bigge St are 120 seconds and the cycle times within the Liverpool CBD at 100 seconds. Clarification is requested why a 60 second 'network practical' cycle time was used in the traffic modelling.	The SIDRA model has been updated to include a set cycle time of 120 seconds for intersections on Bigge Street and 100 seconds for intersections within Liverpool CBD.		

3. Introduction

3.1 Project Summary

ptc. has been engaged by Binah Group to prepare a Traffic Impact Assessment to accompany a Development Application (DA) to Liverpool City Council for the construction of a mixed-use development located at 26 Elizabeth Street, Liverpool.

A map illustrating the location of the subject site is presented in Figure 3.1.

Figure 3.1 - Site Location

3.2 Purpose of this Report

This report presents the following considerations in relation to the Traffic Impact Assessment of the Proposal:

Section 3	A description of the project;
Section 4	A description of the road network serving the subject site, and existing traffic volumes through key local intersections;
Section 5	Determination of the traffic activity associated with the development proposal, and the adequacy of the surrounding road network;
Section 6	Assessment of the proposed parking provision in the context of the relevant planning control requirements;
Section 7	Assessment of the proposed car park, vehicular access and internal circulation arrangements in relation to compliance with the relevant standards, and Council policies; and
Section 8	Conclusion.

3.3 Site Context

The subject site lies within a Mixed-Use zone (B4), situated to the north-east of the Liverpool Town Centre. Key features surrounding the site include:

- The Liverpool Commercial Core (B3), comprising Westfield Liverpool, a variety of retail shops, restaurants and entertainment facilities;
- To the east, lies an Infrastructure precinct (SP2) consisting of Liverpool Hospital, Liverpool Girls High School and TAFE NSW Liverpool;
- To the west lies several Public Recreation (RE1) zones including Collimore Park, Apex Park and Hillier Oval;
- To the south lies Liverpool Train Station, within a 600m walk (8 minutes) from the subject site; and
- The greater residential precinct surrounding the site, comprising typically High Density Residential (R4) zones to the north and west.

Figure 3.2 - Local Land Use Map (Source: NSW Planning Viewer)

3.4 Development Site

The proposal relates to the following site (see Figure 3.3):

• 26 Elizabeth Street, Liverpool (Lot No. 1, DP217460)

Figure 3.3 – Aerial View of Subject Site & Surrounds (Source: Nearmap)

The subject site has a frontage of approximately 49.9m to Elizabeth Street and is currently vacant.

3.5 Development Proposal

The development proposal involves the construction of a mixed-use building, comprising residential apartment units as well a hotel and commercial component; a summary of the proposed unit mix is outlined in Table 3.1. A total of 19 residential units are proposed to be designated as adaptable units.

Table 3.1 - Unit Mix

Component	Туре	No. of Units/GFA
	1-bedroom unit	16
	2-bedroom unit	143
Residential	3-bedroom unit	16
	4-bedroom unit	4
	Total Residential Units	179
Hotel	-	113 rooms (5,928m²)
Commercial	-	5,764m²

Parking will be provided within the basement and level 1 car parks. Parking for the residential and commercial uses are provided within the four-level basement car park, whilst hotel parking is provided within Basement 1 and the Level 1 car park. The proposed site plan and vehicular access arrangement are outlined in Figure 3.4 and Figure 3.5, respectively.

As part of the development, a new laneway along the southern boundary of the subject site will be constructed to facilitate vehicular access to and from the site. The laneway will eventually be constructed to provide a two-way vehicular movement between Bigge and George Streets.

Two driveways are proposed within the new laneway to provide access to the basement and level 1 car parks. Furthermore, a one-way access road is also proposed along the eastern boundary of the site which will facilitate vehicular access to the hotel pick-up/drop-off area. The access road is proposed to operate as a one-way northbound link between the new laneway and Elizabeth Street. A boom gate and appropriate signage will be installed to prevent rat running from Bigge Street to Elizabeth Street.

Figure 3.4 - Proposed Site Plan (Source: Rothelowman)

Figure 3.5 - Vehicular Access Arrangement (Source: Rothelowman)

Details of the proposal are presented on the architectural drawings provided by Rothelowman (see Attachment 1).

- Drawing No. TP01.00-BASEMENT 4 PLAN-(K) (Issued 15/11/19)
- Drawing No. TP01.01-BASEMENT 3 PLAN-(K) (Issued 15/11/19)
- Drawing No. TP01.02-BASEMENT 2 PLAN-(K) (Issued 15/11/19)
- Drawing No. TP01.03-BASEMENT 1 PLAN-(L) (Issued 19/11/19)
- Drawing No. TP01.04-GROUND PLAN-(L) (Issued 19/11/19)
- Drawing No. TP01.05-LEVEL 1 PLAN-(K) (Issued 15/11/19)
- Drawing No. TP03.01-SECTION 1-(H) (Issued 26/09/19)
- Drawing No. TP03.10-SECTION 3,4&5-(F) (Issued 26/09/19)
- Drawing No. TP03.12-RAMP SECTIONS-(E) (Issued 26/09/19)

4. Existing Transport Facilities

4.1 Road Hierarchy

The subject site is located in the suburb of Liverpool and is primarily serviced by state roads including Moore Street, Copeland Street, Hoxton Park Road, as well as a number of local roads managed by the Council. Refer to Figure 4.1 for a map of the road network servicing the site.

Figure 4.1 - Road Hierarchy (RMS Road Hierarchy Review)

The NSW administrative road hierarchy comprises the following road classifications, which align with the generic road hierarchy as follows:

- State Roads Freeways and Primary Arterials (RMS Managed)
- Regional Roads Secondary or sub arterials (Council Managed, Part funded by the State)
- Local Roads Collector and local access roads (Council Managed)

State Road
East - West
1 lane in each direction with parking lanes on both sides of the
carriageway
Undivided
12.5m
40 km/h within immediate vicinity of site (high pedestrian activity)
Yes, between George Street & Bigge Street
Varies
No

Figure 4.2 – Moore Street – Eastbound towards Bigge Street

Copeland Street	
Road Classification	State Road
Alignment	North - South
Number of Lanes	3 lanes in each direction
Carriageway Type	Divided
Carriageway Width	23m
Speed Limit	60 km/h
School Zone	No
Parking Controls	No Stopping, No Parking and Clearway zones
Forms Site Frontage	No

Figure 4.3 – Copeland Street – Northbound towards Elizabeth Drive

George Street	
Road Classification	Local Road
Alignment	North – South
Number of Lanes	Typically, 1 lane in each direction with parking lanes on either side of the carriageway
Carriageway Type	Undivided
Carriageway Width	12.5m
Speed Limit	40km/h
School Zone	Yes, between Campbell Street & Elizabeth Street
Parking Controls	Varies - 1P ticket, unrestricted, No Parking zones
Forms Site Frontage	No

Figure 4.4 – George Street – Northbound towards Elizabeth Street

Elizabeth Street	
Road Classification	Local Road
Alignment	East - West
Number of Lanes	Typically, 1 lane in each direction with parking lanes on either side of the carriageway
Carriageway Type	Undivided
Carriageway Width	12.5m
Speed Limit	40km/h
School Zone	Yes, between George Street and Bigge Street
Parking Controls	Varies – 1P ticket, Loading Zones, Bus Zones, No Parking and No Stopping Zones
Forms Site Frontage	Yes

Figure 4.5 – Elizabeth Street – Westbound towards George Street

Bigge Street	
Road Classification	Local Road
Alignment	North – South
Number of Lanes	Typically, 1 lane in each direction with parking lanes on either side of the carriageway
Carriageway Type	Undivided
Carriageway Width	12.5m
Speed Limit	50km/h
School Zone	Yes, between Elizabeth Street & Campbell Street
Parking Controls	Varies – 1P ticket, No Parking and No Stopping Zones
Forms Site Frontage	No

Figure 4.6 – Bigge Street – Southbound towards Moore Street

4.2 Public Transport

The locality has been assessed in the context of available forms of public transport that may be utilised by prospective residents, employees and visitors. When defining accessibility, the NSW Guidelines to Walking & Cycling (2004) suggests that 400m-800m is a comfortable walking distance.

Figure 4.7 – Walking Catchment (800m radius from the Subject Site)

4.2.1 Train Services

The subject site is within 650m distance from Liverpool Train Station which is served by the Inner West & Leppington Line (T2), Bankstown Line (T3) and the Cumberland Line (T5).

A summary of the services is shown in Table 4.1.

Table 4.1 - Train Service Summary

Train Line	From	То	Frequency (approx.)	Services operate approx. (Weekdays)	Services operate approx. (Weekends)
Inner West & Leppington	Leppington	City	Every 10-20 minutes More frequent during the peak hours	5:21am to 12:35am	3:57am to 12:27am
Inner West & Leppington	City	Leppington	Every 20-30 minutes More frequent during the peak hours	4:58am to 2:32am	5:24am to 2:17am
Bankstown	Liverpool	City	Every 10-15 minutes in the peak hours	3:54am to 12:24am	4:06am to 11:36pm
Bankstown	City	Liverpool	Every 15-20 minutes in the peak hours	6:02am to 2:32am	5:47am to 2:17am
Cumberland	Leppington	Richmond	Every 30 minutes	6:21 am to 12:18am	4:23am to 11:53pm
Cumberland	Richmond	Leppington	Every 30 minutes	7:19am to 12:28am	5:24am to 12:54am

The train services provide high frequency access between Liverpool, the City and neighbouring town centres, particularly during the commuter peak periods. The high frequency services make it a viable alternative mode of transport for prospective residents, visitors and employees.

4.2.2 Bus Services

The site is serviced by medium frequency buses that operate from a number of bus stops located within close proximity. These services are operated by Sydney Bus Network and a summary of the services are shown in Table 4.2 and the bus stop locations are shown in Figure 4.8.

Table 4.2 - Bus Service Summary

Route No.	Coverage	Frequency	Stop Location
823	1	Every 20-30 minutes during peak hours on weekdays, every 60 minutes off-peak	130m

Route No.	Coverage	Frequency	Stop Location
		Every 60 minutes on weekends	
851	Carnes Hill Marketplace to Liverpool via Cowpasture Rd	Every 30 minutes during peak hours on weekdays, every 60 minutes off-peak Every 60 minutes on weekends	110m
852	Carnes Hill Marketplace to Liverpool via Greenway Dr & Cowpasture Rd	Every 30-45 minutes during peak hours on weekdays, every 60 minutes off-peak Every 60 minutes on weekends	110m
853	Carnes Hill to Liverpool via Hoxton Park Rd	Every 20-30 minutes during peak hours on weekdays, every 60 minutes off-peak Every 60 minutes on weekends	110m
854	Carnes Hill to Liverpool via Greenway Dr & Hoxton Park Rd	Every 15-30 minutes during peak hours on weekdays, every 60 minutes off-peak Every 60 minutes on weekends	110m
855	Rutleigh Park to Liverpool via Austral & Leppington Station	Limited services every 3 hours during weekdays and weekends	110m
856	Bringelly to Liverpool	Limited services every 3 hours during weekdays and weekends	110m
857	Narellan to Liverpool	Every 30-45 minutes during peak hours on weekdays, every 60 minutes off-peak Limited services every 3 hours on weekends	110m
865	Casula to Liverpool via Lurnea Shops	Every 30 minutes during weekdays Every 60 minutes on weekends	110m
866	Casula to Liverpool	Every 30 minutes during weekdays Every 60 minutes on weekends	
901	Holsworthy to Liverpool via Wattle Grove	Every 30 minutes during peak hours on weekdays, every 60 minutes off-peak Every 60 minutes on weekends	50m
902	Holsworthy to Liverpool via Moorebank	Every 30 minutes during peak hours on weekdays, every 60 minutes off-peak	50m

Route No.	Coverage	Frequency	Stop Location
		Every 60 minutes on weekends	
903	Liverpool to Chipping Norton (Loop Service)	Every 30 minutes during peak hours on weekdays, every 60 minutes off-peak Every 60 minutes on weekends	50m
904	Fairfield to Liverpool	Every 30 minutes during peak hours on weekdays, every 60 minutes off-peak Every 60 minutes on weekends	50m
M90	Burwood to Liverpool	Every 10 minutes during peak hours on weekdays, every 15 minutes off-peak Every 20 minutes on weekends	50m

Figure 4.8 - Surrounding Bus Stops

4.3 Active Transport

In addition to public transport, the locality has been assessed for its active transport potential. It is noted that the subject site is adjacent to the Liverpool City Centre which will likely lead to higher rates of walking and cycling.

In terms of public infrastructure, the local road network offers a high level of amenity and safety for pedestrians, providing footpaths on either side of most roadways, signalised crossings, supporting signage and appropriate lighting throughout the locality.

In accordance with the RMS Cycleway Finder, the subject site is located within a bicycle network comprising of off-road paths as well as on-road cycle paths (see Figure 4.9). It is noted however, that within the vicinity of the subject site, the cycling network is disconnected between the Liverpool Hospital and the western side of the Liverpool City Centre. Notwithstanding this, the existing cycling infrastructure provides connection to Warwick Farm to the north, and the cycle route along the railway line towards the south provides linkage to Casula and Glenfield.

This will encourage and promote cycling as an alternative mode of transport for its occupants which is a healthy, low cost and environmentally-friendly method of travel.

Figure 4.9 - Surrounding Cycle Paths (Source: RMS Cycleway Finder)

5. Development Traffic Assessment

The potential traffic generation of the proposed development has been estimated with reference to the following:

- RMS Guide to Traffic Generating Developments 2002 (RMS Guide)
- RMS Technical Direction 2013/04 (TDT)
- ITE Trip Generation (8th Edition)

The technical direction contains the most recent RMS survey data for high-density residential developments.

5.1 Existing Traffic Generation

The site was previously occupied by a Toyota service centre with an approximate site area of 3,082m². However, as the site is currently fenced off and not in use, there is no existing traffic generation from this site.

5.2 Development Traffic Generation

To assess the traffic generation for the proposed development, the site has been assessed against a similar site with comparable mode share characteristics for the residential component. Reviewing the RMS survey data for High Density Residential developments within TDT 2013/04, it has been assessed that the City of Bayside (Rockdale) site is the most comparable and this is described in more detail in the following paragraphs.

A review of the id. Profile 'Method of Travel to Work Database' has been undertaken to ascertain the existing travel modes utilised by residents of Liverpool. A summary of the statistical data for Liverpool is presented in Figure 5.1 and Figure 5.2.

Source: Australian Bureau of Statistics, Census of Population and Housing, 2016 (Enumerated data). Compiled and presented in profile.id by .id, the population experts.

Method of travel to wo	export 🖄 reset 🕽						
Liverpool City - Employed persons (Enumerated)	NEW	2016			2011		Change
Main method of travel	Number \$	% \$	Greater Sydney % ≎	Number \$	% \$	Greater Sydney % ≑	2011 to 2016 ≑
Train	10,072	12.0	16.3	7,816	10.5	13.8	+2,256
Bus	1,547	1.8	6.1	1,404	1.9	5.8	+143
Tram or Ferry	7	0.0	0.4	10	0.0	0.4	-3
Taxi	117	0.1	0.2	107	0.1	0.3	+10
Car - as driver	54,670	65.1	52.8	47,751	64.1	53.8	+6,919
Car - as passenger	4,155	4.9	3.9	4,296	5.8	4.5	-141
Truck	1,231	1.5	0.9	1,357	1.8	1.1	-126
Motorbike	275	0.3	0.7	246	0.3	0.6	+29
a Bicycle	166	0.2	0.7	249	0.3	0.8	-83
a Walked only	1,706	2.0	4.0	1,695	2.3	4.1	+11
Other	884	1.1	1.1	713	1.0	1.0	+171
a Worked at home	2,530	3.0	4.3	1,851	2.5	4.0	+679
Did not go to work	5,494	6.5	7.6	5,358	7.2	8.5	+136
Not stated	1,092	1.3	0.9	1,604	2.2	1.5	-512
Total employed persons aged 15+	83,946	100.0	100.0	74,457	100.0	100.0	+9,489

Source: Australian Bureau of Statistics, Census of Population and Housing 2011 and 2016. Compiled and presented by .id , the population experts.

Figure 5.2 - Method of Travel to Work - Liverpool City Worker's Place of Residence Table (Source: id. profile, 2016)

Based on the information taken from the 'Worker's Place of Residence' study, undertaken in 2016, it was concluded that:

- 65% of residents travel to work as the driver of a vehicle,
- 5% of residents travel to work as a passenger of a vehicle, and
- 14% of residents travel to work by public transport (bus, train, tram or ferry)

The 'Method of Travel to Work' data for Rockdale indicates a similar modal share as outlined below and presented in Figure 5.3 and Figure 5.4.

- 58% of residents travel to work as the driver of a vehicle,
- 3% of residents travel to work as a passenger of a vehicle, and
- 16% of residents travel to work by public transport (bus, train, tram or ferry)

Source: Australian Bureau of Statistics, Census of Population and Housing, 2016 (Enumerated data). Compiled and presented in profile.id by .id, the population experts.

Figure 5.3 - Method of	Travel to Work – City of Ba	avside Worker's Place of Residen	ce Chart (Source: id. profile, 2016)
rigule 3.3 - Method of	Traver to work - City of Da	ayside workers race of Residen	ce chart (Source. la. prome, 2010)

City of Bayside - Employed persons (Enumerated)	NEW 2016			2011			Change
Main method of travel 🚓	Number \$	% \$	Greater Melbourne % ≎	Number \$	% \$	Greater Melbourne % ≎	2011 to 2016 ‡
Train	7,035	15.5	11.5	5,515	12.8	10.0	+1,520
Bus	318	0.7	1.5	292	0.7	1.5	+26
Tram or Ferry	102	0.2	2.4	148	0.3	2.3	-46
Taxi	60	0.1	0.2	82	0.2	0.2	-22
Car - as driver	26,411	58.2	60.4	25,634	59.6	60.6	+777
Car - as passenger	1,293	2.9	3.9	1,323	3.1	4.3	-30
Truck	101	0.2	0.6	148	0.3	0.7	-47
Motorbike	164	0.4	0.4	189	0.4	0.4	-25
a Bicycle	705	1.6	1.4	693	1.6	1.3	+12
a Walked only	978	2.2	3.0	941	2.2	2.9	+37
Other	502	1.1	1.2	402	0.9	1.0	+100
a Worked at home	3,575	7.9	4.2	2,942	6.8	3.7	+633
Did not go to work	3,811	8.4	8.5	4,155	9.7	9.4	-344
Not stated	300	0.7	0.9	570	1.3	1.6	-270
Total employed persons aged 15+	45,355	100.0	100.0	43,034	100.0	100.0	+2,321

Source: Australian Bureau of Statistics, Census of Population and Housing 2011 and 2016. Compiled and presented by .id , the population experts.

Figure 5.4 - Method of Travel to Work - City of Bayside Worker's Place of Residence Table (Source: id. profile, 2016)

For the Rockdale site, the trip generation rates, per unit (based on the RMS data) is

• PM peak – 0.18 trips per unit

Based on this analysis, it is concluded that a more suitable traffic generation rate for the development is 0.18 trips per unit.

The rates from the RMS Guide and TDT were adopted to estimate the potential traffic generated by the development. The rates have been summarised below:

- High Density Residential: 0.18 trips per dwelling in the PM Peak
- Hotel: 0.4 trips per unit in the PM Peak (rate for motel developments)
- Commercial: 1.2 trips per 100m² GFA in the PM Peak

Considering that the RMS Guide does not provide traffic generation data relating to hotel developments, the rates stipulated for a motel has been adopted. However, a 20% reduction factor has been incorporated into the assessment based on the following reasons:

- The rates stipulated in the RMS guide assumes 100% occupancy of units. Although this may be a conservative approach, in reality the hotel will not experience 100% occupancy;
- Motels are roadside hotels designed primarily for motorists, with parking directly outside each room. As such, the rate is considered to be conservative as many visitors to the hotel will arrive/depart via public transport, shuttle buses and taxis;
- The area is predominantly a hospital precinct, as such the hotel is likely to accommodate many hospital staff/visitors, and therefore will not generate additional traffic to the road network;
- The hotel is serviced by a strong and frequent bus network. The site is also within a comfortable walking distance (650m) from Liverpool Train Station; and
- Not every room will be allocated a parking space under the basis that many of the visitors will be arriving via coaches, shuttle buses and taxis.

In light of the aforementioned points, a 20% reduction factor is considered to be reasonable for the subject development.

A 20% reduction factor has also been adopted for the traffic generation associated with the commercial component of the development. The reduction factor is considered reasonable based on the following points:

- The commercial component will primarily service the residents and hotel staff/visitors, and will not be the primary attractor to the development. As such, the commercial component is not likely to generate a large volume of external trips; and
- The development is serviced by a strong bus network which provides regular services. The site is also within a comfortable walking distance (650m) from Liverpool Train Station.

In light of this, the proposed development results in the following traffic activity as outlined in Table 5.1.

Table 5.1 - Trip Generation Summary

Component	Period	Vehicle Trip Rate	Dwellings/ GFA	Trips
Residential	PM Peak	0.18 trips per dwelling	179	33 (32.2)
Hotel	PM Peak	0.4 trips per unit (with 20% reduction)	113	37 (36.2)
Commercial	PM Peak	1.2 trips per 100m ² GFA (with 20% reduction)	5,764m²	56 (55.3)
			TOTAL	126

5.3 Surrounding Intersections

The following key intersections are located within the vicinity of the site:

- Elizabeth Street & George Street Four-legged signalised intersection
- Elizabeth Street & Bigge Street Four-legged signalised intersection
- Bigge Street & Moore Street Four-legged signalised intersection
- Moore Street & George Street Four-legged signalised intersection

5.4 Traffic Surveys

Traffic turning counts were undertaken at the two intersections above on Wednesday 25th July 2018 (outside school holiday period), between 7:00am to 6:00pm. These periods were selected in order to coincide with the morning and evening commuter peaks.

In general, the peak periods are 8am-9am in the morning and 4:30pm-5:30pm in the evening; however, the modelling adopts the worst-case scenario which utilises the peak traffic volumes for each intersection to provide a robust assessment.

The survey results are presented in the following figures.

Figure 5.5 - Peak Hour Traffic Volume at Elizabeth Street/ Bigge Street intersection

Figure 5.6 - Peak Hour Traffic Volume at Elizabeth Street/ George Street intersection

Figure 5.7 - Peak Hour Traffic Volume at Moore Street/George Street intersection

Figure 5.8 - Peak Hour Traffic Volume at Moore Street/ Bigge Street intersection

5.5 Trip Distribution

The following assumptions are made to determine the assignment of the additional trips generated by this development:

- It is assumed that in the AM Peak 80% of trips are outbound and 20% are inbound, whilst in the PM Peak, 20% of trips are outbound and 80% are inbound;
- AM Peak:
 - Outbound:
 - 40% of outbound vehicles will be northbound, along Bigge Street, onto Hume Highway and towards the Sydney CBD; and
 - 20% of outbound vehicles will be southbound, along George Street, onto Hume Highway and towards Campbelltown;
 - 20% of outbound vehicles will be southbound, along George Street, onto M5 and towards Sydney CBD; and
 - 20% of outbound vehicles will be westbound, along Elizabeth Street towards the west which are considered to be local trips; and
 - It is assumed that no vehicles will travel eastbound as the east is constrained by Liverpool Hospital and the heavy rail line.
 - Inbound:
 - 40% of inbound vehicles will be travelling from the north, along George Street from Hume Highway;
 - 20% of inbound vehicles will be travelling from the south, along Hume Highway and onto Elizabeth Street;
 - 20% of inbound vehicles will be travelling from the south, along the M5 and onto Bigge Street; and
 - 20% of inbound vehicles will be travelling from the west, along Elizabeth Street.
- PM Peak:
 - Outbound:
 - 40% of outbound vehicles will be northbound, along Bigge Street, onto Hume Highway and towards the Sydney CBD; and
 - 20% of outbound vehicles will be southbound, along George Street, onto Hume Highway and towards Campbelltown;
 - 20% of outbound vehicles will be southbound, along George Street, onto M5 and towards Sydney CBD; and
 - o 20% of outbound vehicles will be westbound, along Elizabeth Street towards the west; and
 - It is assumed that no vehicles will travel eastbound as the east is constrained by Liverpool Hospital and the heavy rail line.
- Inbound:
 - 40% of inbound vehicles will be travelling from the north, along George Street from Hume Highway;
 - 20% of inbound vehicles will be travelling from the south, along Hume Highway and onto Elizabeth Street;
 - 20% of inbound vehicles will be travelling from the south, along the M5 and onto Bigge Street; and
 - \circ 20% of inbound vehicles will be travelling from the west, along Elizabeth Street.

These assumptions have been represented in Figure 5.9 and Figure 5.10.

Figure 5.9 - AM and PM Peak Outbound Distribution

Figure 5.10 - AM and PM Peak Inbound Distribution

5.6 Surrounding Developments

To conduct a robust traffic assessment, nearby proposed developments have been considered and assessed in a cumulative manner. This cumulative traffic assessment has been directed by Liverpool City Council who has requested that that the proposed expansion of Westfield Shopping Centre and the redevelopment of Liverpool Hospital are considered in the SIDRA model.

5.6.1 Westfield Shopping Centre

Colston Budd Rogers & Kafes Pty Ltd have prepared a Traffic Report for the proposed Entertainment and Lifestyle Precinct and office tower on the roof of the existing Westfield Shopping Centre. The precinct will increase the shopping centre floor area by approximately 5,417m² whilst the office tower will provide an additional 11,174m² floor space.

It is noted that the peak period for Westfield Shopping Centre, which the traffic report has modelled, is Thursday afternoon and Saturday middays. As such, the potential traffic generated by the expansion of the shopping centre has only been added to the weekday PM peaks.

The additional volumes generated by the Westfield development and included in the model is shown in Figure 5.11.

Figure 5.11 – Westfield Shopping Centre Traffic Volume (Weekday PM Peak)

5.6.2 Liverpool Hospital

Potential traffic generation from the Liverpool Hospital redevelopment have also been included in the SIDRA model. The traffic volumes are based on the model provided by GTA consultants.

The volumes included in the model for the AM and PM peak periods are shown in Figure 5.12 and Figure 5.13, respectively.

Figure 5.12 – Liverpool Hospital Traffic Volume (Weekday AM Peak)

Figure 5.13 – Liverpool Hospital Traffic Volume (Weekday PM Peak)

5.7 Scenarios

Three scenarios have been modelled as part of the assessment:

- Scenario 1: Existing
- Scenario 2: Future Base (Existing + Traffic Generated by Westfield Shopping Centre & Liverpool Hospital)
- Scenario 3: Future Base + Development Traffic Generation

5.8 SIDRA Results

The surveyed intersections have been modelled with SIDRA Intersection 8.0 software, a micro-analytical tool for individual intersections and whole-network modelling. The models are based on the traffic survey data in Section 5.4. SIDRA provides a number of performance indicators, outline below:

- Degree of Saturation The total usage of the intersection expressed as a factor of 1 with 1 representing 100% use/saturation. (e.g. 0.8=80% saturation)
- Average Delay- The average delay encountered by all vehicles passing through the intersection. It is often important to review the average delay of each approach as a side road could have a long delay time, while the large free flowing major traffic will provide an overall low average delay.
- Level of Service (LoS) This is a categorization of average delay, intended for simple reference. The RMS adopts the following bands:
- 95% Queue Lengths (Q95) is defined to be the queue length in metres that has only a 5-percent probability of being exceeded during the analysis time period. It transforms the average delay into measurable distance units.

Level of Service is a good indicator of overall performance for individual intersections, with each level summarised in Table 5.2.

Level of Service	Average Delay (secs/vehicle)	Traffic Signals, Roundabout	Give Way & Stop Signs
Α	<14	Good operation	
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity. At signals, incidents would cause excessive delays. Roundabouts require other control mode	At capacity, requires other control mode
F	>70	Extra capacity required	Extreme delay, major treatment required

Table 5.2 – Level of Service Definitions

A SIDRA analysis has been conducted for the following key intersections, based upon the survey data collected on 25th July 2018 (which lies outside the school holiday period):

- Elizabeth Street & George Street
- Elizabeth Street & Bigge Street
- Moore Street & Bigge Street
- Moore Street & George Street

The fill movement summary outputs from SIDRA are provided in Attachment 2.

The SIDRA results are summarised in Table 5.3.

Intersection	Time	Period	Level of Service	Degree of Saturation (v/c)	Average Delay (s)	95% Queue Length (m)
		Scenario 1	В	0.598	24.7	87.5
	AM Peak	Scenario 2	В	0.588	24.3	89.4
Elizabeth Street		Scenario 3	В	0.606	24.7	93.1
& George Street		Scenario 1	В	0.693	28.0	126.0
	PM Peak	Scenario 2	В	0.706	28.1	129.5
		Scenario 3	В	0.697	28.0	132.6
		Scenario 1	В	0.599	24.0	155.1
	AM Peak	Scenario 2	В	0.719	25.8	201.2
Elizabeth Street		Scenario 3	В	0.757	27.4	209.1
& Bigge Street		Scenario 1	В	0.521	19.7	123.9
	PM Peak	Scenario 2	В	0.528	17.3	109.2
		Scenario 3	В	0.532	17.3	112.0
		Scenario 1	В	0.454	14.7	60.5
	AM Peak	Scenario 2	В	0.457	14.8	61.7
Moore Street &		Scenario 3	В	0.459	14.8	61.7
Bigge Street		Scenario 1	В	0.495	19.3	124.3
	PM Peak	Scenario 2	В	0.503	17.1	113.0
		Scenario 3	В	0.503	17.0	113.0

Intersection	Time	Period	Level of Service	Degree of Saturation (v/c)	Average Delay (s)	95% Queue Length (m)
		Scenario 1	В	0.314	25.9	41.3
	AM Peak	Scenario 2	В	0.314	25.9	41.3
Moore Street &		Scenario 3	В	0.338	26.0	47.3
George Street		Scenario 1	В	0.386	23.2	76.4
	PM Peak	Scenario 2	В	0.392	23.0	77.7
		Scenario 3	В	0.397	22.7	76.0

5.8.1 Elizabeth Street & George Street

The level of service at this intersection, post-development remains at LOS B for both the AM and PM peak. Each performance measure is affected marginally for both the AM and PM peaks and are considered to be acceptable. Post-development there will be approximately 30-40% spare capacity for the AM and PM peaks. The traffic impact at this intersection as a result of the development will be minor.

5.8.2 Elizabeth Street & Bigge Street

This intersection is currently performing at a LOS B during both the AM peak and PM peak. The level of service at this intersection remains at the same level of service post-development, with each performance measure increasing marginally.

5.8.3 Moore Street & Bigge Street

The level of service at this intersection, post-development remains at LOS B for both the AM and PM peak. Each performance measure increases marginally for both the AM and PM peaks and are considered to be acceptable. Post-development there will be approximately 50-55% spare capacity for the AM peak and PM peak. It is noted that in the post-development scenario is an improvement in the performance of the intersection during the PM peak due to the increase in through movement along Bigge Street which lowers the weighted average delay.

5.8.4 Moore Street & George Street

The level of service at this intersection, post-development remains at LOS B for both the AM peak and PM peak. Each performance measure increases marginally for both the AM and PM peaks and are considered to be acceptable. Post-development there will be approximately 60-70% spare capacity for the AM and PM peak. It is noted that in the post-development scenario is an improvement in the performance of the intersection during the PM peak due to the increase in through movement along George Street which lowers the weighted average delay.

5.9 Traffic Impact Summary

A trip generation of 126 trips in the PM peak is anticipated to have a minor impact on the surrounding road networks. Although this equates to approximately two additional vehicular trips per minute, these trips will be distributed throughout the road network and can be accommodated within the existing conditions.

The SIDRA results also indicate that the development will have minimal impact on the existing road network with a marginal increase in the performance indicators at each intersection.

6. Parking Provision

6.1 Planning Policy

The proposed development is subject to the parking provision rates and requirements for End of Trip Facilities (EOTF) as stipulated in the following planning documents:

- Liverpool Development Control Plan 2008 (DCP) Part 4 Liverpool City Centre
- RMS Guide to Traffic Generating Developments 2002 (RMS Guide)
- NSW Planning Guidelines for Walking & Cycling 2004

6.2 Proposed Parking Provision

6.2.1 Car Parking Provision

As outlined in Section 3.5, the proposed development will accommodate 179 residential units. Of the 179 residential apartments, a total of 19 dwellings are proposed to be adaptable units. Applying the DCP parking rates to the proposal results in the following provision requirements outlined in Table 6.1.

Component	No. of Dwellings/GFA	DCP Parking Rate (min)	DCP Parking Provision Requirement (min)	Proposed Parking Provision	
RESIDENTIAL					
1-bedroom	16	1 space / unit	16		
2-bedroom	143	1 space / unit	143		
3-bedroom	16	1.5 spaces / unit	24		
4-bedroom	4	1.5 spaces / unit	6		
		Sub-total	189	184	
Residential Visitors	179	1 space / 10 units	18 <i>(17.9)</i>	18	
	Total Re	esidential Parking Spaces	207	202	
HOTEL					
Hotel	5,928m ²	1 space per 100m ² GFA	60	58	
COMMERCIAL					
Commercial Premises	5,764m²	1 space per 100m ² GFA	58	58	
		TOTAL:	325	318	

Table 6.1 – Car Parking Provision

It is noted that the DCP does not stipulate the requirements between staff and visitor parking for nonresidential uses. Thus, an assumption has been made that the commercial development will be predominantly under office use. In this regard, the parking provision of 60% staff and 40% visitor has been adopted.

Whilst it is acknowledged that there is an overall shortfall of seven parking spaces, the proposal includes the provision of car share parking which can reduce the off-street parking demand by allowing multiple users to share a single parking space. Further details in relation to car share parking are provided in Section 6.2.2.

6.2.2 Car Share Parking

Car share parking allows for a convenient and affordable transport mode which encourages more sustainable travel habits. Furthermore, car share bays provide an efficient use of available parking space whereby a single car share vehicle can replace up to 12 private vehicles that would otherwise compete for local parking, as described by City of Sydney Council¹. Furthermore, the Inner West Council (Leichhardt DCP 2013) adopts a parking concession whereby one car share space can be provided in lieu of five car spaces.

Car share spaces have been proposed for the residential and hotel components of the development. Based on the parking concession rates adopted by the City of Sydney and Inner West Council's, a rate of one car share space per three car spaces has been adopted for the development. This provides a conservative rate which takes into account the higher car dependency which may be associated with regional centres located further west of the Sydney CBD. In light of the above, the proposed parking provision outlined in Table 6.1 includes the combined provision of three car share bays, which has the potential to offset a parking requirement of 9 car spaces.

In light of the above, the provision of car share parking, in addition to the proposed 318 spaces, is able to offset the shortfall of seven spaces and therefore should be considered on merit.

6.2.3 Accessible Parking Provision

The accessible parking provisions have been determined based on the requirements of the DCP. Applying the rates from the DCP to the proposal results in the following parking provisions summarised in Table 6.2.

Component	No. of Adaptable Dwelling/ Spaces	DCP Parking Rate (min)	DCP Parking Provision Requirement (min)	Proposed Parking Provision	
RESIDENTIAL					
Residents	19 dwellings	1 space / adaptable dwelling	19	19	
Visitors	18 spaces	2 spaces / 100 visitor car spaces	1 <i>(0.4)</i>	1	
HOTEL					
Hotel	58 spaces	2 spaces / 100 car spaces	2 (1.2)	2	

Table 6.2 - Accessible Car Parking Provision

¹Source: https://www.cityofsydney.nsw.gov.au/live/residents/car-sharing

²⁶ Elizabeth Street, Liverpool; Binah Group; 13 January 2020; © Copyright; **ptc.**

Component	No. of Adaptable Dwelling/ Spaces	DCP Parking Rate (min)	DCP Parking Provision Requirement (min)	Proposed Parking Provision
COMMERCIAL				
Commercial	58 spaces	2 spaces / 100 car spaces	2 (1.2)	2
		TOTAL	24	24

As shown in Table 6.2, a total of 24 accessible parking spaces are required under the DCP. A total of 24 accessible parking spaces are proposed and therefore aligns with the DCP requirement.

6.2.4 Bicycle Parking Provision

As outlined in Part 4.3 of the DCP, bicycle parking is to be provided in accordance with the following minimum rates (applicable to all developments):

- 1 bicycle space per 200m² GFA
- 15% of the required bicycle parking provision is to be accessible to visitors

Applying the above rates to the subject proposal leads to the provisions outlined in Table 6.3.

Table 6.3 - Bicycle Parking Provision

Component	Туре	GFA (m²)	DCP Parking Provision Rate (min)	DCP Parking Provision Requirement (min)	Proposed Bicycle Parking Provision
Residential	Residents	15,855m²	85% * (1 space / 200m² GFA)	68	79
Residential Visitor		15,855m ²	15% * (1 space / 200m² GFA)	12	14
			Residential Subtotal	80	93
Hotel	Hotel Staff	5,928m ²	85% * (1 space / 200m² GFA)	25	26
Hoter	Hotel Visitor 5,928m ²		15% * (1 space / 200m² GFA)	5	5
			Hotel Subtotal	30	31
Commercial	Commercial Staff	5,764m²	85% * (1 space / 200m² GFA)	24	24

Component	Type GFA (m²)		DCP Parking Provision Rate (min)	DCP Parking Provision Requirement (min)	Proposed Bicycle Parking Provision
	Commercial Visitor	5,764m²	15% * (1 space / 200m² GFA)	5	5
			Commercial Subtotal	29	29
			TOTAL	139	153

The development will provide bicycle parking facilities in accordance with the requirements of AS2890.3 (2015):

- Class B bicycle facilities are to be provided for residents and staff; and
- Class C bicycle rails are to be provided for the visitors.

As outlined in Table 6.3, a total of 139 bicycle parking spaces are required and 153 have been provided (including 24 visitor bicycle spaces, which adheres to the minimum requirement of 24) within the basement and level 1 car parks.

6.2.5 End of Trip Facilities

In accordance with the recommendations outlined within the NSW Planning Guidelines for Walking 7 Cycling, end of trip facilities (EOTF) have been provided within the Basement 1 car park which will serve the staff associated with the hotel and commercial component of the development. The EOTF includes the following amenities:

Hotel

- 2 x showers;
- 2 x changing cubicles; and
- 10 x personal lockers.

Commercial

- 8 x showers;
- 2 x changing cubicles; and
- 5 x personal lockers.

6.2.6 Motorcycle Parking Provision

As outlined in Part 4.3 of the DCP, motorcycle parking is to be provided in accordance with the following minimum rate (applicable to all developments):

• 1 motorcycle space per 20 car parking spaces

Applying the above rates to the proposal leads to the provisions outlined in the following table.

Table 6.4 - Motorcycle Parking Provision

Component	No. of Proposed Car Parking Spaces	DCP Parking Provision Rate (min)	DCP Parking Provision Requirement (min)	Proposed Parking Provision
Residential	202	1 space / 20 car spaces	11 <i>(10.1)</i>	12
Hotel	58	1 space / 20 car spaces	3 <i>(2.9)</i>	4
Commercial	58	1 space / 20 car spaces	3 <i>(2.9)</i>	3
		TOTAL	17	19

As shown in Table 6.4, a total of 17 motorcycle parking spaces are required under the DCP. A total of 19 motorcycle parking spaces are included in the proposal which meets the DCP requirements.

6.2.7 Service Bay Provision

In regards to servicing, the DCP outlines the service vehicle parking requirements for residential uses as outlined below:

• 1 space per 40 units (including removalist vans and car washing bays, up to a maximum of 4 spaces per building)

It is noted that the DCP does not stipulate the service vehicle parking requirements for other types of development. In lieu of such information, reference has been made to Section 5.2.3 of the RMS Guide which outlines the recommended minimum parking provisions for delivery and service vehicles.

Applying the RMS parking rates to the proposal results in the following provision requirements outlined in Table 6.5.

Table 6.5 - Service Bay Provision

Component	No. of Dwellings/ GFA	DCP/RMS Parking Rate	DCP/RMS Parking Provision Requirement (min)	Proposed Parking Provision	
Residential	179	1 space per 40 units (up to a maximum of 4 spaces)	4	-	
Hotel (50% of spaces adequate for trucks)	113	1 space for the first 50 suites + 1 space per 100 suites thereafter	2 (1.6)	-	
Commercial (50 % of spaces adequate for trucks)	5,764m²	1 space per 4,000m ² GFA (up to 20,000m ²) + 1 space per 8,000m ² thereafter	2 (1.4)	-	
		TOTAL	8	7	

As outlined in Table 6.5, a total of eight service bays are required in accordance with the requirements of the DCP and RMS Guide. The proposal includes a provision of 7 service bays which are provided within the loading dock as well as the basement and level 1 car parks.

The loading dock is provided on the ground floor for servicing and deliveries. Two truck bays are proposed within the loading dock where the northern bay has been designed to accommodate trucks up to a 9.9m long Council refuse vehicle. The southern loading bay is capable of accommodating trucks up to a standard 6.4m SRV.

A car wash bay for residential use has been provided within the basement car park, whilst four service bays are allocated within the level 1 car park. Connection between the residential and hotel lift lobbies will allow shared use of the service bays by the residential and hotel components of the development. The service bays located within the level 1 car park are able to accommodate B99 car-derived vans and utes; larger vehicles will be required to utilise the loading dock.

In regards to hotel servicing, a service bay accommodating B99 car derived vans/utes is provided within Basement 1, whereas trucks are proposed to utilise the two loading bays within the loading dock.

It is proposed that the service bays located within the ground floor loading dock and the level 1 car park will be shared amongst the residential, hotel and commercial components of the development. As such, the shortfall of one service bay is able to accommodate the servicing demand of the development through appropriate management measures. A separate LDMP will need to be prepared in due course to manage the shared use of the proposed loading dock and level 1 service bays.

7. Access and Car Park Assessment

The following section presents an assessment of the proposed development with reference to the requirements of AS2890.1:2004 (Off-street car parking), AS2890.2:2018 (Off-street commercial vehicle facilities), AS2890.3:2015 (Bicycle Parking) and AS2890.6:2009 (Off-street parking for people with disabilities). This section is to be read in conjunction with the architectural plans prepared by Rothelowman (see Attachment 1), issued on 19 November 2019, and the car park assessment undertaken by **ptc.** (see Attachment 3).

7.1 Vehicular Access & Circulation

The following subsections outline the proposed access arrangements to the subject site.

7.1.1 Proposed Laneway Access

As outlined in Section 3.5, two driveways are proposed within the new laneway to provide access to the basement and level 1 car parks. The new laneway will be accommodated within an 8m wide road reserve, comprising of a 1.2m wide footpath along the northern side of the laneway and a 6.5m wide trafficable area along the southern portion of the carriageway (assuming the provision of a 300mm wide kerb on the southern side of the laneway). The trafficable area will consist of a 3m wide traffic lane in each direction with No Stopping restrictions on both sides of the laneway.

As outlined in Section 2, the new east-west laneway will be constructed along the southern boundary of the subject site to facilitate entry and egress via Bigge Street (and ultimately George Street). The construction of the laneway be staged such that the Developer will construct the portion of the laneway between Bigge Street and the western boundary of the subject site. Upon development of the neighbouring site to the west, the laneway will be extended to George Street which will ultimately provide a two-way connection between George and Bigge Streets. Furthermore, a hotel pick-up/drop-off area driveway is also proposed along the eastern boundary of the site which can be accessed via the new laneway with egress onto Elizabeth Street (one-way northbound flow) link In order to restrict access to the pick-up/drop-off area to hotel vehicles only (to prevent rat running from Bigge Street to Elizabeth Street), a boom gate is provided for access control.

The proposed vehicular access arrangement is presented in Figure 7.1.

Figure 7.1 - Vehicular Access Arrangement (Source: Rothelowman)

7.1.2 Signage

In order to allow for unimpeded two-way access throughout the new laneway and the hotel drop off/pick up area, appropriate signage will need to be installed to prohibit parking along these roads. Figure 7.2 presents the proposed signage locations.

It should be noted that in order to achieve the sight distance requirement exiting from the hotel drop off/pick up area onto Elizabeth Street, there is a loss of three on street parking spaces. Nevertheless, the net loss of on-street parking spaces can be reduced to one space after reinstating the kerb and gutter at the existing driveway on Elizabeth Street.

Figure 7.2 – Proposed Signage Plan

7.1.3 Loading Dock and Basement Car Park Access

Access into the loading dock and basement car park is provided via a 9.5m wide driveway located at the south-western corner of the site. This driveway will facilitate access by light vehicles and service/refuse vehicles, with a 10.54m long substation service vehicle expected to be the longest vehicle required to access the site. Refer to Section 7.6 for further details of the substation service vehicle access and Attachment 3 for details of the swept path assessment.

7.1.4 Level 1 Car Park Access

The driveway located to the east of the substation will facilitate access to the level 1 car park and will only be required to accommodate light vehicles. The development proposes a 6.1m wide access driveway which is capable of allowing two-way passing of a B99 and a B85 vehicle. Refer to Attachment 3 for details of the swept path assessment.

7.2 Pick-up and Drop-off Facility

7.2.1 Hotel Pick-up/Drop-off Access

Access to the hotel pick-up and drop-off facility has been designed to accommodate a 7m Toyota Coaster minibus with trailer, resulting in a total overall vehicle length of 11.65m. Smaller vehicles such as a 5.4m Toyota HiAce Minibus with trailer (total vehicle length of 9.4m) is also able to be accommodated.

The width of the entry driveway to the pick-up/drop-off facility is approximately 7.8m and has been determined based on a swept path assessment for a 7m Toyota Coaster minibus. The link road accommodates a 3.2m wide parking lane to accommodate a bus bay (as per the NSW State Transit Bus Infrastructure Guide) and accessible parallel parking (as per AS2890.6). The one-way (northbound) traffic lane has been designed to accommodate heavy vehicles and has a width of 3.5m (between kerbs).

The egress driveway located within the Elizabeth Street frontage is 8.95m wide (including wings), which has been determined on a performance basis to facilitate the left turn manoeuvre for a 7m Toyota Coaster minibus onto Elizabeth Street. It is noted that all traffic exiting from the link road onto Elizabeth Street will need to be restricted to left-out only due to the close proximity to the upstream intersection of Bigge Street/Elizabeth Street.

7.3 Pedestrian Access

In terms of pedestrian connectivity, a new 1.2m wide footpath will be constructed along the northern side of the laneway to provide an east-west pedestrian link along the southern frontage of the site. The existing pedestrian footpath along the northern frontage on Elizabeth Street will be retained, providing a convenient link to the Liverpool town centre.

Furthermore, the new access road along the eastern site boundary at the hotel pick-up/drop-off facility will accommodate north-south pedestrian connectivity between the two frontages. This pedestrian pathway is will be protected by bollards to ensure physical separation between pedestrian and vehicular movements.

7.4 Ramp Design

The initial portion of the access ramp connecting the ground floor to the basement car park is to be designed in accordance with AS2890.2, as heavy vehicles will be required to utilise the area to the west of the loading dock for vehicle manoeuvring.

In accordance with AS2890.2, maximum ramp grades are to meet the following requirements:

- Maximum grades do not exceed 1:8 (12.5%) where reverse manoeuvres are required;
- Transition grades do not exceed 1:16 (6.25%) in 7.0m in travel; and
- Maximum grades do not exceed 1:20 (5%) for at least the longest wheelbase from the property line.

The access ramps within the basement and level 1 car parks are designed in accordance with AS2890.1 where:

- Maximum grades do not exceed 1:4 (25%) for residential private car parking;
- Maximum grades do not exceed 1:5 (20%) for non-residential and public parking;
- Transition grades do not exceed *\1:8 (12.5%) for at least 2m in length; and
- Maximum grades do not exceed 1:20 (5%) for first 6m from the property line.

7.5 Sight Distance

The sight distance requirements are outlined in Section 3.2.4 of AS2890.1 and Section 3.4.5 of AS2890.2, and are prescribed on the basis of the post speed limit or 85th percentile vehicle speeds along the frontage road.

The section of Elizabeth Street between Bigge Street and Bathurst Street is designated as a high pedestrian activity zone with a posted speed limit of 40km/h. In accordance with Figure 3.2 of AS2890.1, a desirable visibility distance of 55 metres and a minimum stopping sight distance of 35 metres is required for light vehicles. For heavy vehicles, the sight distance requirement is outlined in Figure 3.3 of AS2890.2 which stipulates a desirable sight distance of 89m and a minimum stopping sight distance of 55m. The proposed egress-only driveway within the Elizabeth Street frontage is located in a straight section of the road. It is noted that there is existing on-street parking on the southern side of Elizabeth Street along the site frontage. Due to proposed driveway on Elizabeth Street, some on-street parking spaces will be lost. However, the development will provide 339 off-street parking spaces. In light of this, the net loss of parking in the locality is considered to be minimal.

In regards to the driveways located at the southern boundary of the site, the driveway to the loading dock and basement car park has been designed in accordance with the sight distance requirements of AS2890.2 for heavy vehicle access. Furthermore, the access driveway to the level 1 car park has been designed as per the visibility requirements of AS2890.1 for light vehicles.

For pedestrian visibility, the sight splays in the form of 2.5m x 2.0m right-angled triangles will need to be provided to ensure visibility of pedestrians travelling along the footpath adjacent to the southern site boundary. Minor amendments to ensure that the sight splays are achieved as well as the provision of traffic safety devices (e.g. convex mirrors, flashing lights etc.) shall be finalised during the detailed design stage.

The proposed car parks allow all vehicles to enter and exit in a forward direction, therefore minimising potential conflict points and maintaining the overall safety of the road network.

7.6 Substation Service Vehicle Access

A substation is proposed along the southern boundary of the site adjoining the rear laneway. In order to facilitate servicing and maintenance of the substation, heavy vehicle access is required by mobile cranes. **ptc.** has been advised by the Project Electrical Engineer that a 10.54m long rigid vehicle will require access to the substation. The prescribed service vehicle is identified as the Type 1 truck within the Endeavour Energy (EE) Network Standard. The EE Network Standard outlines the requirements for the design, construction and maintenance of assets in the Endeavour Energy network.

The vehicle manoeuvring of a 10.54m long Type 1 service truck has been modelled using an HRV and a swept path assessment has been conducted to demonstrate site access. It is highlighted that an HRV has been used only to model the vehicle manoeuvring space required for the 10.54m Type 1 substation service truck. The requirements for the height clearance have been adopted from the EE Standard which are specific to the Type 1 service vehicle and stipulates a minimum height clearance of 4.4m (for vehicular access only, excluding loading and unloading operation). Details of the swept path assessment is presented in Attachment 3.

The swept path assessment demonstrates that the service vehicle will enter from the east via Bigge Street, enter the loading dock and utilise the two service vehicle bays to turn around and exit. It is noted that a five-point turn will be required for the substation service vehicle to enter and exit the site via Bigge Street.

A height clearance of 4.5m has been provided within the loading dock and along the vehicle path, satisfying the requirement for HRV access in AS2890.2.

It is proposed that the service vehicle will occupy the laneway in order to conduct servicing and maintenance of the substation. As such, the lane way will be required to be closed and vehicular access to the car parks will not be possible for the duration of the maintenance works. As such, a Road Closure and Standing Plant Permit will need to be lodged to Council for approval for any servicing and maintenance works.

It is noted that substation servicing will only occur in the event of a catastrophic failure of the equipment or at the end of the equipment life cycle. As such, servicing operations are anticipated to occur only every 20 years, as per the advice by the Project Electrical Engineer.

7.7 Car Park Arrangement

7.7.1 Typical Requirements

The car park access and parking arrangements have been assessed against the requirements of AS2890.1:2004, with reference to Class 1A (residential/employee) facilities, Class 2 (long-term city and town centre parking for hotels) and Class 3 (short-term town centre parking) facilities for the commercial visitor component of the development. The development is to provide the following dimensions for the parking spaces:

Class 1A (Residential/employee) Parking Facilities:

- Car Spaces: 2.4m x 5.4m
- Aisle Width: 5.8m (minimum)

Class 2 (Long-term City and Town Centre/Hotel) Parking Facilities:

- Car Spaces: 2.5m x 5.4m
- Aisle Width: 5.8m (minimum)

Class 3 (Short-term Town Centre) Facilities:

- Car Spaces: 2.6m x 5.4m
- Aisle Width: 5.8m (minimum)

Parallel Spaces (based on 3.6m one-way aisle width):

- Space Length: 5.9mSpace Length (obstructed end): 6.2m
- Space Width: 2.1m (plus 300mm to any obstructions higher than 150mm)

The parking spaces have been individually assessed and found to be generally compliant with or meeting the intent of AS2890.1. The parking spaces meet the clearance requirements (door opening, entry flanges, column locations) of the parking space envelope requirements provided in Figure 5.2 of AS2890.1, and a minimum blind aisle of 1 metre has been provided where required.

The aisle widths provided have been measured to be minimum of 5.8m with an additional 300mm provided in areas where one side of the aisle is bounded by a structure higher than 150mm. In locations whether there is a vertical obstruction greater than 150mm and the additional 300mm has not been provided, a swept path assessment has been undertaken to demonstrate the parking spaces are fit-for-purpose on a performance basis. Refer to Attachment 3 for further details of the swept path assessment.

7.7.2 Accessible Parking

The accessible parking spaces have been assessed against the requirements of AS2890.6. Accessible parking spaces are to be designed based on the following dimensions:

- Accessible Space: 2.4m x 5.4m
- Adjacent Shared Bay: 2.4m x 5.4m (with a bollard)

All shared bays and accessible spaces shall be installed in accordance with AS2890, including the installation of bollards and relevant pavement marking. A minimum height clearance of 2.5m is to be maintained above all accessible and shared bays.

It is noted that some shared areas are partially obstructed by adjoining car spaces. Approval from the Accessibility Consultant is required to confirm access to the shared bays is acceptable.

7.7.3 Headroom Clearance

Headroom clearances have also been assessed against the requirements of the Australian Standards. Headroom clearances are to be provided as follows:

- Minimum 2.2m above all general spaces;
- Minimum 2.5m above all accessible spaces and adjacent shared bays;

AS2890.2 stipulates that a minimum 4.5m headroom clearance needs to be provided for on-site parking facilities accommodating HRVs.

It is anticipated that the 10.54m substation service truck will be the largest vehicle which will require access to the loading dock (approximately once every 20 years). A vertical clearance assessment has been undertaken using a standard 12.5m HRV for access into the loading dock (see Attachment 3 for details). The assessment identified a minor overhead infringement of 10mm at the entry to the loading dock due to the change in grades at the entry; however, this is considered to be within tolerance and therefore acceptable. Furthermore, it is highlighted that under general operation, the largest vehicle anticipated to utilise the loading dock is a 9.9m Council refuse truck which has a body height of 3.4m.

A height clearance of 4.75m is provided within the hotel pick-up/drop-off facility, satisfying the minimum height requirement of 4.5m for MRVs, as per AS2890.2.

7.7.4 Bicycle Parking

All bicycle parking spaces are to be provided in accordance with AS2890.3 and the Council DCP.

- Class 2 bicycle facilities are to be provided for residents and staff of the hotel/commercial components; and
- Class 3 bicycle rails are to be provided for the visitors.

Approved bicycle parking devices (BPD's) shall be installed as per the following requirements of AS2890.3:2015:

- Horizontal parking: 1800mm x 500mm;
- Vertical Parking: 1200mm x 500mm;
- Access aisle: 1500mm <u>OR</u> 2000mm for lockers

7.7.5 Motorcycle Spaces

Motorcycle parking spaces are to be provided in accordance with the requirements of AS2890.1. Motorcycle spaces are to provide the following dimensions:

- Length: 2.5m
- Width: 1.2m

7.7.6 Loading Dock

The Loading Dock has been designed to accommodate a 9.9m Council refuse vehicle, which is anticipated to be the largest vehicle requiring access to the site under general operation. The loading dock includes a provision of two loading bays, one capable of accommodating trucks up to and including a 9.9m Council refuse vehicle, and the other capable of accommodating trucks up to 6.4m SRVs.

As outlined in Section 7.6, access to the loading dock will also be required by a 10.54m substation service vehicle to perform the required manoeuvres to turn around and exit via Bigge Street. A swept path assessment for the substation service truck (based on a 12.5m HRV) has been undertaken indicating that a five-point turn is required for manoeuvring.

A swept path assessment has been conducted to ensure that heavy vehicles accessing the loading dock are able to enter and exit the site in a forward direction and ensure sufficient manoeuvring area has been provided. Refer to Attachment 3 for details of the swept path assessment.

8. Conclusion

ptc. has been engaged by Binah Group to prepare a Traffic Impact Assessment to accompany a Development Application (DA) to Liverpool City Council for the construction of a mixed-use development located at 26 Elizabeth Street, Liverpool. The proposal comprises the following:

- 179 residential apartments;
- 113 hotel rooms; and
- 5,764m² GFA allocated to commercial premises.

Parking will be provided within the basement and level 1 car parks. Parking for the residential and commercial uses are provided within the four-level basement car park, whilst hotel parking is provided within the Basement 1 and Level 1 car parks. As part of the development, a new laneway along the southern boundary of the subject site will be constructed to facilitate vehicular access to and from the site. The laneway will be constructed to provide two-way vehicle movement between Bigge and George Streets. In terms of pedestrian connectivity, a new 1.2m wide footpath will be constructed along the northern side of the laneway to provide an east-west pedestrian link along the southern frontage of the site.

Two driveways are proposed within the new laneway to provide access to the basement and level 1 car parks. Furthermore, a one-way access road is also proposed along the eastern boundary of the site which will facilitate vehicular access to the hotel pick-up/drop-off area. The access road is proposed to operate as a one-way northbound link between the new laneway and Elizabeth Street. Traffic exiting onto Elizabeth Street will be restricted to left-out only due to the close proximity to the signalised intersection located upstream on Elizabeth Street. A boom gate will be installed to restrict access for the general public to avoid rat running.

A trip generation of 126 trips in the PM peak is anticipated to have a minor impact on the surrounding road networks. Although this equates to approximately two additional vehicular trips per minute, these trips will be distributed throughout the road network and can be accommodated within the existing conditions. The SIDRA results also indicate that the development will have minimal impact on the existing road network with a marginal increase in the performance indicators at each intersection.

In regards to parking, the development provides a total of 321 car parking spaces. Included within this provision are:

- 184 residential spaces (including 19 residential accessible bays);
- 18 residential visitor spaces (including one accessible bay);
- 58 hotel parking spaces (including two accessible bays);
- 58 commercial parking spaces (including two accessible bay); and
- 3 car share spaces (comprising two hotel and one residential car share spaces).

The proposed provision of 318 car parking spaces (excluding the three car share spaces) results in a shortfall of 7 car parking spaces when compared with the minimum requirement of 325 car spaces as stipulated within the DCP. However, integrating the principles adopted by City of Sydney and Inner West Council, whereby the car share vehicles are able to reduce the number of private vehicles competing for parking spaces, it is anticipated that the provision of 3 car share parking spaces (in addition to the 318 proposed car spaces) can offset the shortfall in the parking provision.

In addition to car parking, seven service bays have been provided which are proposed to be shared amongst the various users. A separate LDMP will need to be prepared in due course to manage the shared use of the proposed service bays.

A total of 153 bicycle parking spaces and 19 motorcycle bays have also been provided within the basement and level 1 car parks for prospective residents, visitors and staff associated with the development.

A review of the facility has been undertaken with reference to AS2890.1:2004, AS2890.2:2018, AS2890.3:2015 and AS2890.6:2009 and found the proposal to be generally in compliance with or meeting the intent of the relevant standards. Any non-standard elements within the design are able to be revisited and adjusted during the detailed design stage to ensure full compliance prior to Construction Certification.

Attachment 1 Architectural Plans

							APART	MENTS				AMENITY			HOTEL ROOMS		
LEVEL	RESIDENTIAL	PARKING	COMMERCIAL	HOTEL	TERRACE	No. 1 BEDS	No. 2 BEDS	No. 3 BEDS	No. 4 BEDS	TOTAL APARTMENTS	No. ADAPTABLE	No. LHA	No. SOLAR	No. HOTEL STANDARD	No. HOTEL N ACCESSIBLE	IO. HOTEL SELF CONTAINED	TOTAL HOTEL
BASEMENT 4	22 m ²	2609 m ²		0 m ²	0 m ²	0	0	0	() 0	0	0 0	0	0	0	0	(
BASEMENT 3	21 m ²	2471 m ²		0 m²	0 m²	0	0	0	() 0	0	0	0	0	0	0	(
BASEMENT 2	16 m ²	2321 m²	101 m²	0 m²	0 m²	0	0	0	() 0	0	0	0	0	0	0	C
BASEMENT 1	16 m ²	1575 m²	43 m²	383 m²	0 m²	0	0	0	() 0	0	0	0	0	0	0	C
GROUND	138 m ²	381 m²	89 m²	570 m²	0 m²	0	C	0	() 0	0	0	0	0	0	0	C
LEVEL 1	0 m ²	1206 m ²	0 m²	393 m²	0 m²	0	C	0	() 0	0	0	0	0	0	0	C
LEVEL 2	0 m ²	0 m²	1844 m²	0 m²	0 m²	0	C	0	() 0	0	0	0	0	0	0	(
LEVEL 3	0 m²	0 m²	1849 m²	0 m²	23 m²	0	0	0	() 0	0	0	0	0	0	0	(
LEVEL 4	0 m ²	0 m²	1838 m²	0 m²	22 m²	0	C	0	() 0	0	0	0	0	0	0	C
LEVEL 5	0 m²	0 m²	0 m²	1164 m²	22 m²	0	0	0	() 0	0	0	0	25	2	1	28
LEVEL 6	0 m²	0 m²	0 m²	1174 m²	0 m²	0	0	0	() 0	0	0	0	25	2	1	28
LEVEL 7	0 m²	0 m²	0 m²	1173 m²	0 m²	0	C	0	() 0	0	0	0	25	2	1	28
LEVEL 8	0 m²	0 m²	0 m²	1069 m²	38 m²	0	C	0	() 0	0	0	0	28	0	1	29
LEVEL 9	561 m ²	0 m²	0 m²	0 m²	291 m²	0	C	0	() 0	0	0	0	0	0	0	(
LEVEL 10	627 m²	0 m²	0 m²	0 m²	79 m²	4	C	4	() 8	0	4	6	0	0	0	(
LEVEL 11	641 m²	0 m²	0 m²	0 m²	85 m²	0	8	0	() 8	1	0	6	0	0	0	(
LEVEL 12	642 m²	0 m²	0 m²	0 m²	74 m²	0	8	0	() 8	1	0	6	0	0	0	(
LEVEL 13	642 m²	0 m²	0 m²	0 m²	74 m²	0	8	0	() 8	1	0	6	0	0	0	(
LEVEL 14	642 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	() 8	1	0	6	0	0	0	C
LEVEL 15	627 m²	0 m²	0 m²	0 m²	79 m²	4	C	4	() 8	0	4	6	0	0	0	C
LEVEL 16	642 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	() 8	1	0	6	0	0	0	C
LEVEL 17	642 m²	0 m²	0 m²	0 m²	74 m²	0	8	0	() 8	1	0	6	0	0	0	C
LEVEL 18	642 m²	0 m²	0 m²	0 m²	74 m²	0	8	0	() 8	1	0	6	0	0	0	C
LEVEL 19	642 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	() 8	1	0	6	0	0	0	(
LEVEL 20	627 m²	0 m²	0 m²	0 m²	67 m²	4	0	4	() 8	0	4	6	0	0	0	(
LEVEL 21	642 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	() 8	1	0	6	0	0	0	(
LEVEL 22	642 m²	0 m²	0 m²	0 m²	74 m²	0	8	0	() 8	1	0	6	0	0	0	(
LEVEL 23	642 m²	0 m²	0 m²	0 m²	74 m²	0	8	0	C) 8	1	0	6	0	0	0	C
LEVEL 24	642 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	C) 8	1	0	6	0	0	0	(
LEVEL 25	627 m ²	0 m²	0 m²	0 m²	67 m²	4	0	4	C) 8	0	4	6	0	0	0	(
LEVEL 26	642 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	C) 8	1	0	6	0	0	0	(
LEVEL 27	642 m²	0 m²	0 m²	0 m²	74 m²	0	8	0	C) 8	1	0	6	0	0	0	(
LEVEL 28	642 m²	0 m²	0 m²	0 m²	63 m²	0	8	0	C) 8	1	0	6	0	0	0	(
LEVEL 29	642 m ²	0 m²	0 m²	0 m²	53 m²	0	8	0	(8	1	0	6	0	0	0	(
LEVEL 30	664 m²	0 m²	0 m²	0 m²	82 m²	0	5	0	1	6	1	0	4	0	0	0	(
LEVEL 31	665 m ²	0 m²	0 m²	0 m²	80 m²	0	5	0		6	1	0	4	0	0	0	0
LEVEL 32	665 m ²	0 m²	0 m²	0 m²	80 m²	0	5	0	1	6	1	0	4	0	0	0	(
LEVEL 33	311 m ²	0 m ²	0 m ²	0 m ²	383 m ²	0		0		1		0	1	0	0	0	C
	15855 m ²	10562 m ²	5764 m²	5928 m ²	2538 m ²	16	143			179		16			6	4	113
						1 BED	2 BED	3 BED	4 BED	TOTAL			SOLAR				
						9%	80%	9%	3%	b 100%			COMPLIANT	۲ ۲			
						 	······			mmm	······	·······	74.3%				

			(CARPARKS	<u> </u>								CAR PARKI	NG PROV	ISION	MOTORBIKE	E PROVISIO	N
							ACCESSIBLE	<u>:</u>						Rates	Reqd.		Rates	Reqd.
						FLOOR	INCL. IN			MOTORCYCLE /		RESIDENTIAL	1 bed	1	16	Residential	0.05 x car	10
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	TOTAL	TOTAL	SERVICE	CARWASH	SCOOTER PARKS	BICYCLE PARKS	STORES	2 bed	1	143	Commercial	0.05 x car	3
BASEMENT 4	88	0	0	0	0	88	7	7 () 6	33	70	3+ bed	1.5	30	Hotel	0.05 x car	4
BASEMENT 3	79	0	0	0	0	79	10) () 1	4	43	72	Resident	1.0	189	Total		18
BASEMENT 2	17	5	58	0	0	80	4	4 0	0 0) 3	27	29	Visitor	0.1	18	10101		
BASEMENT 1	0	13	0	30 28	3	46		2 1		$\frac{1}{2}$	35	0	VISIO	0.1		BICYCLE PF	ROVISION	
LEVEL 1 TOTAL	101	10	5 9		0	28		1 4 A E	+ (= 4	2	10	171	Commercial	1 / 100sq	m 57		Rates	Reqd.
TUTAL	184	18	58	58	ు	321	24	+		19	153	171	Hotel	1 / 100sq	m 62	Residential	1 / 200sqm	93
																Commercial	1 / 200sqm	29
	CAR SHARE SPACES TO MAKE UP THE SHORTFALL II	N CAR PARKING SPAC	ES SHARE CARS SPACES ARE	PROPOSED AS INDI	CATED ON PLANS								Total		326	Hotel	1 / 200sqm	31
																Total		153

DEVELOPMENT APPLICATION

Revisions / н K

13.08.19 FOR COORDINATION 22.08.19 FOR COORDINATION 05.09.19 ISSUED FOR SUBMISSION 26.09.19 ISSUED FOR SUBMISSION 15.11.19 FOR TRAFFIC REVIEW

JLi JLi JLi JLi NE Project / ELIZABETH STREET

26 ELIZABETH STREET

^{Date} 14/09/18 Project No 218004

LIVERPOOL **Disclaimer**: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

NOTES

GFA Gross Floor Area has been calculated as per the definition in the relevant Local Environmentl Plan (LEP) as shown in the GFA diagrams

SOLAR ACCESS

Living rooms and private open spaces of at least 70% of apartments in a building receive a minimum of 2 hours direct sunlight between 9am and 3pm at mid winter in the Sydney Metropolitan Area and in the Newcastle and Wollongong local government areas.

CROSS VENTILATION

Apartments at ten storeys or greater are deemed to be cross ventilated only if any enclosure of the balconies at these levels allows adequate natural ventilation and cannot be fully enclosed.

ADAPTABLE UNITS

A minimum of 10% o all apartments are to be designed to be capable of adaption for access by people with all levels of mobility. In accordance with the Australian Apaptable Housing Standard (AS 4299-1995), which includes 'pre-adaption' design details to ensure visitability is achieved.

UNIVERSAL DESIGN

20% of the total apartments in a development to incorporate the Liveable Housing Guideline's Silver Level Universal Design features.

DISCLAIMER

Areas are not to be used for the purpose of lease or sale agreements. The information in these schedules is believed forrect at the time of printing. Areas are generally measured in accordance with the Property Council of Australia Method of Measurement, unless otherwise noted above.

SITE AREA	PERMISSIBLE FSR	MAXIMUM GFA
3082m ²	1:10	30,820m²
~~		
{	PROGRAM	GFA {
Ş	COMMERCIAL	5676 m² ろうろう ろうろう ひんしょう ひんしょう ひんしょう うちょう ひんしょう うちょう うちょう ひんしょう うちょう ひんしょう ちょうちょう ひんしょう ちょう ひんしょう ちょう ちょう ひんしょう うちょう ひんしょう ひんしょ ひんしょう ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ ひんしょ
Ę	HOTEL	6112 m ²
ξ	RESIDENTIAL	18118 m²
Ę	······	29906 m ²

Revisions	
F	=
(G
ŀ	H
	J
ł	<

13.08.19 FOR COORDINATION 22.08.19 FOR COORDINATION 05.09.19 ISSUED FOR SUBMISSION 26.09.19 ISSUED FOR SUBMISSION 15.11.19 FOR TRAFFIC REVIEW

JLi
JLi
JLi
JLi
NE

М MECH MC OSD RF ST SP VD

WL

MECHANICAL RISERS MECHANICAL SERVICES MOTORCYCLE PARK ON SITE DETENTION REFUSE CHUTE STORE STAIR PRESSURISATION VEHICLE DETECTOR IN SLAB VEHICLE WARNING LIGHT

15/11/2019 3:13:14 PM

	CARPARKS								
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL		
BASEMENT 4	88	0	0	0	0	88	7		
BASEMENT 3	79	0	0	0	0	79	10		
BASEMENT 2	17	5	58	0	0	80	4		
BASEMENT 1	0	13	0	30	3	46	2		
LEVEL 1	0	0	0	28	0	28	1		
TOTAL	184	18	58	58	3	321	24		

Project / ELIZABETH STREET

BASEMENT 4 PLAN

26 ELIZABETH STREET LIVERPOOL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

Revisions	
⁄ F	
G	
Н	
J	
К	

13.08.19 FOR COORDINATION 22.08.19 FOR COORDINATION 05.09.19 ISSUED FOR SUBMISSION 26.09.19 ISSUED FOR SUBMISSION 15.11.19 FOR TRAFFIC REVIEW

JLi
JLi
JLi
JLi
NE

М MECH MC OSD RF ST SP VD

WL

MECHANICAL RISERS MECHANICAL SERVICES MOTORCYCLE PARK ON SITE DETENTION REFUSE CHUTE STORE STAIR PRESSURISATION VEHICLE DETECTOR IN SLAB VEHICLE WARNING LIGHT

15/11/2019 3:13:20 PM

	CARPARKS								
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL		
BASEMENT 4	88	0	0	0	0	88	7		
BASEMENT 3	79	0	0	0	0	79	10		
BASEMENT 2	17	5	58	0	0	80	4		
BASEMENT 1	0	13	0	30	3	46	2		
LEVEL 1	0	0	0	28	0	28	1		
TOTAL	184	18	58	58	3	321	24		

Project ELIZABETH STREET BASEMENT 3 PLAN

26 ELIZABETH STREET LIVERPOOL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than it? intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

Revisions /	/
	F
	G
	н
	J
	K

13.08.19 FOR COORDINATION 22.08.19 FOR COORDINATION 05.09.19 ISSUED FOR SUBMISSION 26.09.19 ISSUED FOR SUBMISSION 15.11.19 FOR TRAFFIC REVIEW

JLi
JLi
JLi
JLi
NE

М MECH MC OSD RF ST SP VD

WL

MECHANICAL RISERS MECHANICAL SERVICES MOTORCYCLE PARK ON SITE DETENTION REFUSE CHUTE STORE STAIR PRESSURISATION VEHICLE DETECTOR IN SLAB VEHICLE WARNING LIGHT

15/11/2019 3:13:26 PM

W			

	CARPARKS									
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL			
BASEMENT 4	88	0	0	0	0	88	7			
BASEMENT 3	79	0	0	0	0	79	10			
BASEMENT 2	17	5	58	0	0	80	4			
BASEMENT 1	0	13	0	30	3	46	2			
LEVEL 1	0	0	0	28	0	28	1			
TOTAL	184	18	58	58	3	321	24			

Project / ELIZABETH STREET

Drawing BASEMENT 2 PLAN

Project No 218004 Date 07/11/18

26 ELIZABETH STREET LIVERPOOL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

			ABBREVIA	TIONS LEGEND			COLOUR FILL	LEGEND
22.08.19 05.09.19 26.09.19	FOR COORDINATION ISSUED FOR SUBMISSION ISSUED FOR SUBMISSION	JLi JLi JLi	COM CM EL	COMMUNICATIONS SERVICES CONVEX MIRROR ELECTRICAL SERVICES	M MECH MC	MECHANICAL RISERS MECHANICAL SERVICES MOTORCYCLE PARK		COMMERCIAL
15.11.19 19.11.19	FOR TRAFFIC REVIEW FOR TRAFFIC REVIEW	NE JLi	ELEC EOT EX	ELECTRICAL SERVICES END OF TRIP FACILITIES FIRE EXTINGUISHER	OSD RF ST	ON SITE DETENTION REFUSE CHUTE STORE		RESIDENTIAL
2019 11:24:43	АМ		FHR HY HYD IC	FIRE HOSE REEL HYDRAULIC RISERS HYDRAULIC SERVICES INTERCOM / CARD READER	SP VD WL	STAIR PRESSURISATION VEHICLE DETECTOR IN SLAB VEHICLE WARNING LIGHT		HOTEL
			M MECH	MECHANICAL RISERS MECHANICAL SERVICES				

19/11/2019 11:24:43 AM

Revisions

G

н

J

К

L

	CARPARKS							
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL	
BASEMENT 4	88	0	0	0	0	88	7	
BASEMENT 3	79	0	0	0	0	79	10	
BASEMENT 2	17	5	58	0	0	80	Z	
BASEMENT 1	0	13	0	30	3	46	2	
LEVEL 1	0	0	0	28	0	28		
TOTAL	184	18	58	58	3	321	24	

TITLE BOUNDARY 275° 01' 00" (2.330 m) TITLE BOUNDARY 278° 36' 35" (24.310 m)

Project ELIZABETH STREET

BASEMENT 1 PLAN

Project No 218004 Date 07/11/18

26 ELIZABETH STREET LIVERPOOL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

LIVERPOOL

DEVELOPMENT APPLICATION

Revisions /

G

н

J

ĸ

L

19/11/2019 11:24:53 AM

			ABBREVIA	TIONS LEGEND			COLOUR FIL	LLEGEND
22.08.19 05.09.19	FOR COORDINATION	JLi JLi	COM	COMMUNICATIONS SERVICES	М	MECHANICAL RISERS		
			CM	CONVEX MIRROR	MECH	MECHANICAL SERVICES		COMMERCIAL
26.09.19	ISSUED FOR SUBMISSION	JLi	EL	ELECTRICAL SERVICES	MC	MOTORCYCLE PARK		
15.11.19	FOR TRAFFIC REVIEW	NE	ELEC	ELECTRICAL SERVICES	OSD	ON SITE DETENTION		
19.11.19	FOR TRAFFIC REVIEW	JLi	EOT	END OF TRIP FACILITIES	RF	REFUSE CHUTE		RESIDENTIAL
			EX	FIRE EXTINGUISHER	ST	STORE		
			FHR	FIRE HOSE REEL	SP	STAIR PRESSURISATION		
			HY	HYDRAULIC RISERS	VD	VEHICLE DETECTOR IN SLAB		HOTEL
019 11:24:53	AM		HYD	HYDRAULIC SERVICES	WL	VEHICLE WARNING LIGHT		
			IC	INTERCOM / CARD READER				
			Μ	MECHANICAL RISERS				
			MECH	MECHANICAL SERVICES				

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

М

MECH

MECHANICAL RISERS

MECHANICAL SERVICES

Revisions /	/	
	F	
	G	2
	н	(
	J	2
	к	

13.08.19 FOR COORDINATION 22.08.19 FOR COORDINATION 05.09.19 ISSUED FOR SUBMISSION 26.09.19 ISSUED FOR SUBMISSION

15/11/2019	3:13:50	ΡM

ELIZABETH STREET

Drawing LEVEL 1 PLAN

Project No 218004 ^{Date} 07/11/18

26 ELIZABETH STREET LIVERPOOL

COMMERCIAL

RESIDENTIAL

HOTEL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

		CARPARKS						
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL	
BASEMENT 4	88	0	0	0	0	88	7	
BASEMENT 3	79	0	0	0	0	79	10	
BASEMENT 2	17	5	58	0	0	80	4	
BASEMENT 1	0	13	0	30	3	46	2	
_EVEL 1	0	0	0	28	0	28	1	
TOTAL	184	18	58	58	3	321	24	

NE NE NE JLi JLi

COLOUR FILL LEGEND COMMERCIAL RESIDENTIAL HOTEL

	3100 3100 3100 3100 3100 3100 3100 3100		2205 2105 1905 1705 1705 1405	2204 2104 2004 1904 1904 1504 1504 1404 1404 1304 1304	2203 2103 2003 1903 1803 1803 1803 1803 1803 1803 1803 18	SUNSHADE
= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	3100 3100 3100 3100 3100 3100 3100 3100		2105 1905 1805 1705 1605 1405 1305	2104 2004 1904 1804 1704 1704 1704 1704 1604 1604 1604 1604 1604 1604 1604 16	2103 2003 2003 1903 1803 1803 1703 1603 1603 1603 1603 1103 1303 1303 1103	
1 1 <td>3100 3100 3100 3100 3100 3100 3100 3100</td> <td></td> <td>1905 1705 1605 1405</td> <td>2004 1904 1804 1704 1704 1704 1704 1704 1704 1704 1604 1604 1604 1604 1604 1604 1604 16</td> <td>2003 1903 1803 1703 1603 1603 1603 1603 1603 1603 1103 1203 1203 1203</td> <td>SUNSHADE</td>	3100 3100 3100 3100 3100 3100 3100 3100		1905 1705 1605 1405	2004 1904 1804 1704 1704 1704 1704 1704 1704 1704 1604 1604 1604 1604 1604 1604 1604 16	2003 1903 1803 1703 1603 1603 1603 1603 1603 1603 1103 1203 1203 1203	SUNSHADE
	001E 001E 000 3100 3100 3100 3100 3100 3		1905 1805 1705 1605 1405	1904 1804 1704 1604 1504 1404 1304	1903 1803 1703 1703 1603 1703 1703 1603 1703 1103 1103	SUNSHADE
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	001E 001E 001E 001E 001E 001E 001E 001E		1805	1804 1704 1604 1504 1404 1304	1803 1703 1603 1603 1603 1603 1603 1403 1303 1303 1203 1103	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	001E 001E 001E 001E 001E 001E 001E		1705	1704 1604 1504 1404 1304	1703 1603 1503 1403 1303 1203 1103	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	3100 3100 3100 3100 3100 3100 3100		1405	1604 1504 1404 1304	1603 1503 1403 1303 1203 1103	SUNSHADE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>3100 3100 3100 3100 3100</td> <td></td> <td>1405</td> <td>1504 1404 1304</td> <td>1503 1403 1303 1203 1103</td> <td>SUNSHADE</td>	3100 3100 3100 3100 3100		1405	1504 1404 1304	1503 1403 1303 1203 1103	SUNSHADE
1 1	3100 3100 3100 3100	1406 1306 1206	1405 1305	1404 1304	1403 1303 1203 1103	SUNSHADE
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	3100 3100 3100 3100	1306 1206	1305	1304	1303 1203 1103	SUNSHADE
$\begin{tabular}{ c c c c c c c c c c$	3100 3100 J	1206	000		1203 1103	SUNSHADE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1205	1204	1103	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td>1106</td> <td>1105</td> <td>1104</td> <td></td> <td></td>		1106	1105	1104		
1 1 <td></td> <td>Ţ</td> <td></td> <td>1004</td> <td>1003</td> <td></td>		Ţ		1004	1003	
1 1	0015					
R MOTLSTORE RMES MOTLSTORE MOTL	3000		HOTEL STORE	SRVCS		
R MOTE STORE E MOTE STORE E MORE NOTE F MOTE STORE E MORE NOTE	3000		HOTEL STORE	SRVCS		
R Trend Logical Next Logical Next R Another Another Another Another Another R Another Another Another Another R Anoother Anoot	3000		HOTEL STORE	SRVCS		
R COMERCIAL COMERCIAL COMERCIAL R Samon COMERCIAL I R Samon Samon Samon R Samon Samon R Samon S		A1	HOTEL STORE	SERVICES		
Rel Subsect Contenctu. Contenctu. Contenctu. Rel Sinterior Meteriori. Contenctu. Image: Contenctu. Rel Meteriori. Contenctu. Image: Contenctu. Image: Contenctu. Rel Meteriori. Contenctu. Image: Contenctu. Image: Contenctu. Rel Meteriori. Meteriori. Meteriori. Meteriori. Rel ELZAETHI SI REL Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel ELZAETHI SI REL Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel ELZAETHI SI REL Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel ELZAETHI SI REL Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel Image: Contenctu. Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel Image: Contenctu. Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel Image: Contenctu. Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel Image: Contenctu. Image: Contenctu. Image: Contenctu. Image: Contenctu. Rel Image: Contenctu. Image: Contenctu. Image: Contenctu. Image: C	3200			COMMERCIAL		
Subsidie Contectod. Contectod. Contectod. 400 Herring Herring Horris 400 Herring Horris Horris 41 Horris Contectod Bit Loucing 13 Horris Horris Foto a 13 Horris Horris Foto a 14 Horris Horris Foto a 15 Horris Foto a Foto a 16 Horris Foto a Foto a 17 Horris Foto a Bit Couling 18 Horris Horris Horris	3200			COMMERCIAL		
400 METING METING 10 METING METING 11 FLZABETH STREET METING 12 Store MILLADING 13 Store Store 14 MOTEL PARKING MILLADING 15 METING MILLADING 16 MILLADING INLADING 17 Store Store 18 MILLADING 19 MILLADING 14 MILLADING 15 MILLADING 14 MILLADING	SUNSHADE			COMMERCIAL		SUNSHADE
Relation Relation Loading Dock Loading Dock Bustation 11 ELZABETH STREET EEVERAGE UGGAGE COSSULDATION IN LOADING BN LOADING BUSTATION PROPREDID 12 Reserved to the street Reserved to the street IN CLADING NICLADING IN LOADING PROPREDID 13 Reserved to the street Reserved to the street IN CLADING IN CLADING PARKING 14 Reserved to the street Reserved to the street Reserved to the street Reserved to the street	and the second and th			HOTEL PARKING		
1 1	ELIZABETH			BIN LOADING	LOADING DOCK SUBST.	ATION
	9715 	EL PARI	ACCESS		_	PARKING
	3100			COMMERCIAL PARKING		
14	3100		Ş	RESIDENT PARKING		
	14 3100		\sim	RESIDENT PARKING		

26 ELIZABETH STREET LIVERPOOL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

rothelowman

15/11/2019 3:19:30 PM

Revisions			
B	02.08.19	FOR COORDINATION	JLi
С	13.08.19	FOR COORDINATION	JLi
D	22.08.19	FOR COORDINATION	JLi
E	05.09.19	ISSUED FOR SUBMISSION	JLi
F	26.09.19	ISSUED FOR SUBMISSION	JLi

DEVELOPMENT APPLICATION

SECTION 5 TP01.03 SCALE 1 : 200

LEVEL 1 SFL 17.900				
GROUND SFL 12.900	RAMP	LOADING 000 LOCK	RESS RAMP VOID	MECH ETTER BOXES

SECTION 3 TP01.00 SCALE 1 : 200

Project ELIZABETH STREET

26 ELIZABETH STREET LIVERPOOL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document to prove the transfer of this document. document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

Drawing SECTION 3,4&5

Project No 218004 Date 07/11/18 Author YY Scale: @ A1 1:200 Drawing No. TP03.10 F

² SECTION 4 TP01.00 SCALE 1 : 200

	1			 	
.WNING				 	
ROPOSED		-	FEATUF LANDSC WALL		

_ . _ . _ . _ . _ . _ . _ . _ . _ .

LEVEL 12 SFL 54.300				Λ
LEVEL 11	SITE BOUNDARY			
LEVEL 10				
	SUNSHADES MEDIA ROOM	MANAGER'S STORE		
LEVEL 8			HOTEL ST.	
			HOTEL ST.	
			HOTEL ST.	
LEVEL 5	SUNSHADES		GYM	
LEVEL 4	COMMERCIAL			
LEVEL 3	COMMERCIAL			
LEVEL 2	COMMERCIAL			
LEVEL 1	HOTEL PARKIN	NG		-
GROUND SFL 12.900		.DING DCK	BIN LOADING	
		ESIDENTIAL BIN ROOM		
	COMMERCIAL PARKING	RAMP	RAMP	
	RESIDENT PARKING	RAMP	RAMP	
BASEMENT 4 S	RESIDENT PARKING	RAMP	RAMP	

Revisions		
A	02.08.19	FOR COORDINATION
В	13.08.19	FOR COORDINATION
С	22.08.19	FOR COORDINATION
D	05.09.19	ISSUED FOR SUBMISSION
E	26.09.19	ISSUED FOR SUBMISSION

JLi JLi

JLi JLi JLi

LEVEL 1 SFL 17.900				I EGRESS	52			
GROUND SFL 12.900	3750	୍ଦ LOADING DOCK	1	EGRESS 1	PODIUM RAMP	PARCEL ROOM	LETTER BOXES	<i>o</i> the
BASEMENT 1 SFL 9.725	AMENITIES		RESIDENTIAL BIN ROOM			1.8		НОТЕ
BASEMENT 2 SFL 6.625	COMMERCIAL PARKING			1:2		1:8		COI P
BASEMENT 3 SFL 3.525	RESIDENT PARKING				1:4	1:8		R P
BASEMENT 4 SFL 0.425	RESIDENT PARKING			1	<u>4</u>			R P
			2000 @ 1:8	1	10400 @ 1:4	2000 1:8		

AMENITIES

OSD TANK RL 15.350

REAR LANEWAY	5800

8000 * REAR LANEWAY • 1:100 BULKY GOODS / CARDBOARD MDF 5000 @ 1:100

TEL PARKING OMMERCIAL PARKING RESIDENT PARKING RESIDENT

PARKING

RAMP SECTIONS

26 ELIZABETH STREET LIVERPOOL

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

Attachment 2 SIDRA Results
Site: 101 [1. Elizabeth St / George St - Existing AM Peak]

Existing AM Peak Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Move	ement	Performa	ance ·	- Vehi	cles									
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Bao Queu		Prop. Queued	Effective Stop	Aver. A No.	verag e
		Total		Total	HV				Vehicles Di			Rate	Cycles S	
East:	Elizab	veh/h eth St (E)	%	veh/h	%	v/c	sec		veh	m				km/h
	LIZAD	100	7.4	100	7.4	0.598	41.1	LOS C	11.0	79.5	0.95	0.80	0.95	11.5
4														-
5	T1	153	2.1	153	2.1	0.598	38.1	LOS C	11.0	79.5	0.95	0.80	0.95	14.9
6	R2	74	5.7	74	5.7	0.598	52.4	LOS D	4.0	29.3	0.99	0.82	1.06	16.7
Appro	bach	326	4.5	326	4.5	0.598	42.3	LOS C	11.0	79.5	0.96	0.81	0.97	14.6
North	: Geor	ge St (N)												
7	L2	59	7.1	59	7.1	0.119	32.3	LOS C	2.1	15.9	0.78	0.70	0.78	16.6
8	T1	232	5.5	232	5.5	0.568	30.9	LOS C	12.0	87.5	0.84	0.74	0.84	16.8
9	R2	80	1.3	80	1.3	0.568	34.3	LOS C	12.0	87.5	0.84	0.74	0.84	19.7
Appro	bach	371	4.8	371	4.8	0.568	31.8	LOS C	12.0	87.5	0.83	0.73	0.83	17.4
West	Elizab	beth St (W)												
10	L2	201	2.1	201	2.1	0.433	14.5	LOS B	10.0	73.1	0.50	0.55	0.50	28.5
11	T1	399	7.1	399	7.1	0.433	11.8	LOS A	10.0	73.1	0.57	0.59	0.57	16.0
12	R2	152	2.1	152	2.1	0.433	16.5	LOS B	7.2	52.3	0.68	0.66	0.68	15.0
Appro	bach	752	4.8	752	4.8	0.433	13.5	LOS A	10.0	73.1	0.58	0.59	0.58	20.9
All Ve	hicles	1448	4.7	1448	4.7	0.598	24.7	LOS B	12.0	87.5	0.73	0.68	0.73	17.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Peo	destrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		verage Back Pedestrian ped	of Queue Distance m	Prop. E Queued Si	Effective top Rate
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
All Pe	destrians	421	44.4	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:32:50 AM

Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 102 [2. Elizabeth St / Bigge St - Existing AM Peak]

♦♦ Network: N101 [Existing AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Ba Quei	le	Prop. Queued	Effective Stop	Aver. A No.	e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles E veh	istance) m		Rate	Cycles S	Speed km/h
Sout	h: Bigg	e St (S)	/0	VEH/H	/0	V/C	300	_	Ven		_		_	K11/11
1	L2	217	4.9	217	4.9	0.580	20.6	LOS B	21.4	155.1	0.68	0.67	0.68	22.2
2	T1	671	3.6	671	3.6	0.580	18.6	LOS B	21.4	155.1	0.69	0.66	0.69	27.8
3	R2	85	1.2	85	1.2	0.477	23.7	LOS B	14.4	103.7	0.69	0.64	0.69	24.6
Appr	oach	973	3.7	973	3.7	0.580	19.5	LOS B	21.4	155.1	0.69	0.66	0.69	26.7
East	Elizab	eth St (E)												
4	L2	49	4.3	49	4.3	0.177	35.9	LOS C	4.2	30.8	0.77	0.67	0.77	9.3
5	T1	96	8.8	96	8.8	0.177	34.1	LOS C	4.2	30.8	0.78	0.67	0.78	9.1
6	R2	23	27.3	23	27.3	0.177	39.4	LOS C	3.2	24.9	0.80	0.66	0.80	18.6
Appr	oach	168	10.0	168	10.0	0.177	35.4	LOS C	4.2	30.8	0.78	0.67	0.78	11.0
North	n: Bigge	e St (N)												
7	L2	23	0.0	23	0.0	0.102	12.5	LOS A	1.9	13.7	0.32	0.33	0.32	30.9
8	T1	339	1.6	339	1.6	0.314	12.8	LOS A	6.6	46.4	0.42	0.39	0.42	25.5
9	R2	18	0.0	18	0.0	0.314	17.6	LOS B	6.6	46.4	0.45	0.41	0.45	24.7
Appr	oach	380	1.4	380	1.4	0.314	13.0	LOS A	6.6	46.4	0.41	0.38	0.41	25.8
West	: Elizat	oeth St (W)											
10	L2	144	3.6	144	3.6	0.277	38.6	LOS C	6.5	46.9	0.81	0.75	0.81	19.8
11	T1	180	15.2	180	15.2	0.599	38.9	LOS C	14.1	107.3	0.91	0.79	0.91	6.4
12	R2	99	2.1	99	2.1	0.599	42.4	LOS C	14.1	107.3	0.91	0.79	0.91	4.4
Appr	oach	423	8.2	423	8.2	0.599	39.6	LOS C	14.1	107.3	0.88	0.78	0.88	8.6
All V	ehicles	1944	4.8	1944	4.8	0.599	24.0	LOS B	21.4	155.1	0.68	0.63	0.68	18.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pec	lestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Ave Service Pe		of Queue Distance m	Prop. E Queued S	Effective top Rate
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
All Pe	edestrians	421	54.4	LOS E			0.95	0.95

Site: 103 [3. Moore St / Bigge St - Existing AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	ement	t Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Bao Queu	е	Prop. Queued	Effective Stop	Aver. A No.	e
		Total veh/h		Total	HV	v/c			Vehicles Di			Rate	Cycles S	
Sout	h: Biaa	e St (S)	70	veh/h	%	V/C	sec	_	veh	m	_	_	_	km/h
1	L2	95	1.1	95	1.1	0.454	8.6	LOSA	6.8	48.2	0.22	0.27	0.22	34.5
2	T1	1087	2.2	1087	2.2	0.454	3.4	LOS A	6.8	48.2	0.19	0.20	0.19	36.8
3	R2	274	1.9	274	1.9	0.448	17.7	LOS B	8.5	60.5	0.57	0.74	0.57	29.8
Appr	oach	1456	2.1		2.1	0.454	6.4	LOS A	8.5	60.5	0.26	0.31	0.26	33.3
	L2	e St (E)	4.5	74	4.5	0.014	40.7		2.5	25.0	0.00	0.74	0.00	10.4
4	L2 T1	71 87		71 87		0.214	48.7	LOS D LOS D	3.5	25.8	0.89	0.74	0.89	19.4
5			61.4		61.4	0.449	48.4		5.8	59.7	0.94	0.76	0.94	16.0
6	R2	20	31.6	20	31.6	0.449	52.0	LOS D	5.8	59.7	0.94	0.76	0.94	16.0
Appr	oach	178	35.5	178	35.5	0.449	48.9	LOS D	5.8	59.7	0.92	0.75	0.92	17.4
North	n: Bigge	e St (N)												
7	L2	12	0.0	12	0.0	0.282	11.8	LOS A	7.6	55.2	0.39	0.36	0.39	38.3
8	T1	354	3.9	354	3.9	0.282	7.2	LOS A	7.6	55.2	0.39	0.36	0.39	39.5
9	R2	59	0.0	59	0.0	0.232	14.9	LOS B	1.3	9.1	0.39	0.65	0.39	27.6
Appr	oach	424	3.2	424	3.2	0.282	8.4	LOS A	7.6	55.2	0.39	0.40	0.39	37.9
West	t: Moor	e St (W)												
10	L2	147	2.1	147	2.1	0.439	51.0	LOS D	7.8	55.5	0.94	0.79	0.94	9.5
11	T1	84	47.5	84	47.5	0.367	44.8	LOS D	5.5	50.8	0.90	0.74	0.90	20.3
12	R2	22	4.8	22	4.8	0.367	48.1	LOS D	5.5	50.8	0.90	0.74	0.90	15.4
Appr	oach	254	17.4	254	17.4	0.439	48.7	LOS D	7.8	55.5	0.92	0.77	0.92	14.4
All V	ehicles	2312	6.6	2312	6.6	0.454	14.7	LOS B	8.5	60.5	0.41	0.41	0.41	26.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	estrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		verage Back Pedestrian ped	of Queue Distance m	Prop. Queued S	Effective Stop Rate
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
All Pe	edestrians	421	54.4	LOS E			0.95	0.95

Site: 104 [4. Moore St / George St - Existing AM Peak]

Existing AM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehio	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Back Queue	of	Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis veh	tance m		Rate	Cycles S	Speed km/h
East:	Moore	Street (E)												
4	L2	49	29.8	49	29.8	0.308	43.9	LOS D	3.6	31.8	0.92	0.74	0.92	16.1
5	T1	117	29.7	117	29.7	0.308	40.3	LOS C	3.7	32.5	0.92	0.73	0.92	14.4
Appro	bach	166	29.7	166	29.7	0.308	41.4	LOS C	3.7	32.5	0.92	0.73	0.92	14.9
North	: Geor	ge Street (N)											
7	L2	88	13.1	88	13.1	0.227	36.7	LOS C	3.5	27.3	0.84	0.74	0.84	15.4
8	T1	261	2.8	261	2.8	0.314	33.7	LOS C	5.8	41.3	0.86	0.69	0.86	20.5
9	R2	53	4.0	53	4.0	0.121	35.7	LOS C	2.0	14.6	0.82	0.72	0.82	18.1
Appro	bach	402	5.2	402	5.2	0.314	34.6	LOS C	5.8	41.3	0.85	0.71	0.85	19.2
West	: Moore	e Street (N	/)											
11	T1	238	12.4	238	12.4	0.246	5.7	LOS A	3.9	29.4	0.29	0.31	0.29	22.5
12	R2	82	1.3	82	1.3	0.246	10.2	LOS A	3.9	29.4	0.35	0.39	0.35	28.7
Appro	bach	320	9.5	320	9.5	0.246	6.9	LOS A	3.9	29.4	0.31	0.33	0.31	25.0
All Ve	hicles	888	11.4	888	11.4	0.314	25.9	LOS B	5.8	41.3	0.67	0.58	0.67	18.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	D	Demand	Average		erage Back o			ffective
ID	Description	Flow	Delay	Service Pe	edestrian [Distance	Queued St	op Rate
		ped/h	sec		ped	m		
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	edestrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:32:50 AM Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 101 [1. Elizabeth St / George St - Existing PM Peak] 🛛 🖶 Network: N102 [Existing PM]

Peak]

Existing PM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	t Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Que	ue	Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total		Total	HV				Vehicles			Rate	Cycles S	
East:	Elizab	veh/h eth St (E)	%	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
4	L2	141	5.2	141	5.2	0.692	37.1	LOS C	16.6	118.4	0.94	0.83	0.94	12.5
5	T1	363	0.9	363	0.9	0.692	37.2	LOS C	16.6	118.4	0.96	0.84	0.98	15.2
6	R2	64	6.6	64	6.6	0.692	47.6	LOS D	9.1	65.4	0.99	0.87	1.06	18.1
Appro	oach	568	2.6	568	2.6	0.692	38.3	LOS C	16.6	118.4	0.96	0.84	0.98	15.1
North	: Geor	ge St (N)												
7	L2	27	7.7	27	7.7	0.139	26.3	LOS B	2.6	19.3	0.64	0.56	0.64	19.6
8	T1	409	4.1	409	4.1	0.693	27.2	LOS B	17.5	126.0	0.82	0.73	0.82	18.0
9	R2	102	0.0	102	0.0	0.693	31.5	LOS C	17.5	126.0	0.85	0.76	0.85	20.7
Appro	oach	539	3.5	539	3.5	0.693	28.0	LOS B	17.5	126.0	0.82	0.73	0.82	18.6
West	: Elizat	oeth St (W))											
10	L2	174	1.2	174	1.2	0.418	17.5	LOS B	9.8	72.9	0.56	0.59	0.56	26.6
11	T1	212	12.4	212	12.4	0.418	14.1	LOS A	9.8	72.9	0.57	0.59	0.57	14.6
12	R2	178	1.2	178	1.2	0.418	22.1	LOS B	4.9	34.4	0.87	0.78	0.87	11.2
Appro	oach	563	5.4	563	5.4	0.418	17.7	LOS B	9.8	72.9	0.66	0.65	0.66	18.8
All Ve	ehicles	1671	3.8	1671	3.8	0.693	28.0	LOS B	17.5	126.0	0.81	0.74	0.82	17.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pe	destrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. E Queued S	Effective top Rate
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
All Pe	destrians	421	44.4	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:32:59 AM

Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 102 [2. Elizabeth St / Bigge St - Existing PM Peak]

Existing PM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	Turn	Demand	Flows	Arriv <u>al</u>	Flows_	Deg.	Average	Level of	95% Ba	ck of	Prop.	Effective	Aver. A	Aver <u>ac</u>
ID						Satn	Delay	Service	Quei		Queued	Stop	No.	e
		Total		Total	HV				Vehicles E			Rate	Cycles S	
South	· Bigg	veh/h e St (S)	%	veh/h	%	v/c	sec		veh	m				km/
30uu 1	L2	363	2.3	363	2.3	0.314	13.5	LOSA	10.1	71.9	0.52	0.68	0.52	25.
-														
2	T1	574	2.2	574	2.2	0.510	10.2	LOSA	17.4	123.9	0.54	0.50	0.54	32.
3	R2	36	2.9	36	2.9	0.510	13.7	LOS A	17.4	123.9	0.54	0.50	0.54	30.
Appro	bach	973	2.3	973	2.3	0.510	11.6	LOS A	17.4	123.9	0.53	0.57	0.53	30.
East:	Elizab	eth St (E)												
4	L2	87	1.2	87	1.2	0.380	49.5	LOS D	7.0	49.7	0.92	0.77	0.92	7.
5	T1	154	4.1	154	4.1	0.380	45.6	LOS D	7.0	49.7	0.91	0.75	0.91	7.
6	R2	20	52.6	20	52.6	0.380	49.1	LOS D	6.5	50.1	0.91	0.74	0.91	16.
Appro	bach	261	6.9	261	6.9	0.380	47.2	LOS D	7.0	50.1	0.92	0.76	0.92	8.
North	: Bigge	e St (N)												
7	L2	31	0.0	31	0.0	0.111	6.9	LOS A	1.3	9.4	0.17	0.23	0.17	35.
8	T1	387	2.4	387	2.4	0.339	6.0	LOS A	5.0	35.4	0.26	0.28	0.26	31.
9	R2	37	0.0	37	0.0	0.339	10.4	LOS A	5.0	35.4	0.29	0.30	0.29	30.
Appro	bach	455	2.1	455	2.1	0.339	6.4	LOS A	5.0	35.4	0.26	0.28	0.26	31.
West	: Elizat	oeth St (W)											
10	L2	74	0.0	74	0.0	0.220	48.7	LOS D	3.7	25.9	0.89	0.74	0.89	17.
11	T1	128	23.0	128	23.0	0.521	47.9	LOS D	8.5	69.3	0.95	0.78	0.95	13.
12	R2	31	0.0	31	0.0	0.521	51.3	LOS D	8.5	69.3	0.95	0.78	0.95	9.
Appro	bach	233	12.7	233	12.7	0.521	48.6	LOS D	8.5	69.3	0.93	0.77	0.93	14.
۵۱۱ //ح	hicles	1921	4 1	1921	4.1	0.521	19.7	LOS B	17.4	123.9	0.57	0.55	0.57	23.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - P	edestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
All Pe	destrians	421	54.4	LOS E			0.95	0.95

Site: 103 [3. Moore St / Bigge St - Existing PM Peak]

Existing PM Peak Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Ba Quei	le	Prop. Queued	Effective Stop	Aver. A No.	e
		Total		Total	HV				Vehicles E			Rate	Cycles S	
Sout	h: Biaa	veh/h e St (S)	%	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/r
1	L2	100	3.2	100	3.2	0.372	12.9	LOS A	7.9	57.4	0.35	0.39	0.35	26.5
2	T1	759	4.0	759	4.0	0.372	7.2	LOS A	7.9	57.4	0.31	0.31	0.31	28.9
3	R2	174	6.7	174	6.7	0.495	29.7	LOS C	7.3	53.9	0.75	0.78	0.75	24.8
Appr	oach	1033	4.4	1033	4.4	0.495	11.6	LOS A	7.9	57.4	0.39	0.40	0.39	26.9
East:	Moore	St (E)												
4	L2	224	0.0	224	0.0	0.483	44.9	LOS D	11.3	78.8	0.90	0.80	0.90	20.3
5	T1	79	66.7	79	66.7	0.245	36.8	LOS C	4.1	43.0	0.82	0.67	0.82	18.
6	R2	9	0.0	9	0.0	0.245	40.2	LOS C	4.1	43.0	0.82	0.67	0.82	18.
Appr	oach	313	16.8	313	16.8	0.483	42.7	LOS D	11.3	78.8	0.88	0.76	0.88	19.9
North	n: Bigge	e St (N)												
7	L2	12	0.0	12	0.0	0.493	17.0	LOS B	17.5	124.3	0.56	0.51	0.56	35.1
8	T1	574	1.5	574	1.5	0.493	12.4	LOS A	17.5	124.3	0.56	0.51	0.56	34.
9	R2	60	1.8	60	1.8	0.185	19.9	LOS B	1.6	11.5	0.48	0.67	0.48	24.0
Appr	oach	645	1.5	645	1.5	0.493	13.2	LOS A	17.5	124.3	0.56	0.53	0.56	33.6
West	: Moore	e St (W)												
10	L2	117	4.5	117	4.5	0.269	41.7	LOS C	5.6	41.5	0.84	0.75	0.84	11.(
11	T1	59	64.3	59	64.3	0.269	42.7	LOS D	5.6	41.5	0.87	0.71	0.87	20.7
12	R2	19	0.0	19	0.0	0.269	46.3	LOS D	3.7	36.6	0.87	0.71	0.87	15.7
Appr	oach	195	22.2	195	22.2	0.269	42.5	LOS C	5.6	41.5	0.85	0.73	0.85	15.4
All Ve	ehicles	2185	6.9	2185	6.9	0.495	19.3	LOS B	17.5	124.3	0.55	0.52	0.55	25.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pec	lestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Av Service F	verage Back Vedestrian ped	of Queue Distance m	Prop. I Queued S	Effective Stop Rate
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
All Pe	edestrians	421	54.4	LOS E			0.95	0.95

Site: 104 [4. Moore St / George St - Existing PM Peak]

Existing PM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Bac Queue		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis veh	stance m		Rate	Cycles S	Speed km/h
East:	Moore	Street (E))											
4	L2	57	11.1	57	11.1	0.375	43.3	LOS D	4.9	41.2	0.92	0.76	0.92	16.2
5	T1	162	33.1	162	33.1	0.375	39.9	LOS C	4.9	41.2	0.92	0.74	0.92	14.5
Appro	oach	219	27.4	219	27.4	0.375	40.8	LOS C	4.9	42.4	0.92	0.75	0.92	15.0
North	: Geor	ge Street (N)											
7	L2	102	8.2	102	8.2	0.129	19.9	LOS B	2.8	21.2	0.61	0.67	0.61	21.5
8	T1	605	3.0	605	3.0	0.386	18.6	LOS B	10.6	76.4	0.69	0.59	0.69	26.3
9	R2	160	1.3	160	1.3	0.189	20.5	LOS B	4.6	32.3	0.63	0.70	0.63	23.5
Appro	oach	867	3.3	867	3.3	0.386	19.1	LOS B	10.6	76.4	0.67	0.62	0.67	25.3
West	: Moore	e Street (N	/)											
11	T1	118	27.7	118	27.7	0.232	19.7	LOS B	4.0	31.8	0.60	0.52	0.60	11.6
12	R2	52	0.0	52	0.0	0.232	25.0	LOS B	4.0	31.8	0.66	0.59	0.66	18.9
Appro	bach	169	19.3	169	19.3	0.232	21.3	LOS B	4.0	31.8	0.61	0.54	0.61	14.5
All Ve	hicles	1256	9.6	1256	9.6	0.386	23.2	LOS B	10.6	76.4	0.70	0.63	0.70	22.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of Ave	erage Back o	f Queue	Prop. E	ffective
ID	Description	Flow	Delay	Service Pe		Distance	Queued St	
		ped/h	sec		ped	m		
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	edestrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:32:59 AM Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 101 [1. Elizabeth St / George St - Future Base AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	t Performa	ance ·	- Vehi	cles									
Mov ID	Turn	Demand F	lows -	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Bao Queu		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Di veh	istance m		Rate	Cycles S	Speed km/h
East:	Elizab	eth St (E)	/0	VCH/H	/0	V/C	300		VCIT					IXI11/11
4	L2	100	7.4	100	7.4	0.574	40.1	LOS C	10.8	78.5	0.93	0.80	0.93	11.8
5	T1	154	2.1	154	2.1	0.574	37.1	LOS C	10.8	78.5	0.94	0.80	0.94	15.1
6	R2	74	5.7	74	5.7	0.574	51.1	LOS D	4.0	29.0	0.98	0.81	1.03	16.9
Appro	oach	327	4.5	327	4.5	0.574	41.2	LOS C	10.8	78.5	0.95	0.80	0.96	14.8
North	n: Geor	ge St (N)												
7	L2	61	6.9	61	6.9	0.128	33.2	LOS C	2.3	16.7	0.79	0.71	0.79	16.4
8	T1	232	5.5	232	5.5	0.588	32.0	LOS C	12.3	89.4	0.85	0.75	0.85	16.4
9	R2	80	1.3	80	1.3	0.588	35.5	LOS C	12.3	89.4	0.85	0.75	0.85	19.3
Appro	oach	373	4.8	373	4.8	0.588	32.9	LOS C	12.3	89.4	0.84	0.74	0.84	17.1
West	: Elizal	oeth St (W)												
10	L2	201	2.1	201	2.1	0.431	13.9	LOS A	9.8	71.6	0.49	0.54	0.49	29.0
11	T1	412	6.9	412	6.9	0.431	11.2	LOS A	9.8	71.6	0.56	0.58	0.56	16.5
12	R2	152	2.1	152	2.1	0.431	15.9	LOS B	7.1	51.9	0.67	0.65	0.67	15.4
Appro	oach	764	4.7	764	4.7	0.431	12.8	LOS A	9.8	71.6	0.56	0.58	0.56	21.4
All Ve	ehicles	1464	4.7	1464	4.7	0.588	24.3	LOS B	12.3	89.4	0.72	0.67	0.72	17.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay		Average Back Pedestrian	of Queue Distance	Prop. I Queued S	Effective Stop Rate					
		ped/h	sec		ped	m							
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
All Pe	destrians	421	44.4	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:12 AM

Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 102 [2. Elizabeth St / Bigge St - Future Base AM Peak]

♦♦ Network: N101 [Future Base AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	ement	t Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Ba Que	ue	Prop. Queued	Effective Stop	Aver. A No.	e
		Total		Total	HV	! -			Vehicles I			Rate	Cycles S	
Sout	h: Biaa	veh/h e St (S)	%	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
1	L2	217	4.9	217	4.9	0.340	16.7	LOS B	10.2	73.9	0.54	0.61	0.54	24.0
2	T1	671	3.6	671	3.6	0.719	21.2	LOS B	28.0	201.2	0.77	0.73	0.77	26.8
3	R2	94	1.1	94	1.1	0.719	26.6	LOS B	28.0	201.2	0.82	0.76	0.82	23.4
Appr		981	3.6	981	3.6	0.719	20.8	LOS B	28.0	201.2	0.72	0.71	0.72	26.1
			0.0	001	0.0	0.710	20.0	LOOD	20.0	201.2	0.72	0.71	0.72	20.1
		eth St (E)												
4	L2	49	4.3	49	4.3	0.198	38.5	LOS C	4.5	33.0	0.80	0.69	0.80	8.8
5	T1	97	8.7	97	8.7	0.198	37.1	LOS C	4.5	33.0	0.82	0.68	0.82	8.5
6	R2	23	27.3	23	27.3	0.198	42.9	LOS D	3.2	25.6	0.84	0.68	0.84	17.7
Appr	oach	169	9.9	169	9.9	0.198	38.3	LOS C	4.5	33.0	0.81	0.68	0.81	10.4
North	n: Bigge	e St (N)												
7	L2	23	0.0	23	0.0	0.103	11.0	LOS A	1.8	12.7	0.29	0.30	0.29	32.1
8	T1	340	1.5	340	1.5	0.316	13.3	LOS A	6.8	48.3	0.42	0.39	0.42	25.1
9	R2	18	0.0	18	0.0	0.316	18.9	LOS B	6.8	48.3	0.48	0.43	0.48	23.8
Appr	oach	381	1.4	381	1.4	0.316	13.4	LOS A	6.8	48.3	0.42	0.39	0.42	25.5
West	: Elizat	oeth St (W)											
10	L2	144	3.6	144	3.6	0.304	41.3	LOS C	6.7	48.7	0.84	0.76	0.84	19.1
11	T1	195	14.1	195	14.1	0.693	42.7	LOS D	15.7	119.2	0.95	0.83	0.96	14.4
12	R2	99	2.1	99	2.1	0.693	46.2	LOS D	15.7	119.2	0.95	0.83	0.96	10.5
Appr	oach	438	7.9	438	7.9	0.693	43.0	LOS D	15.7	119.2	0.92	0.81	0.92	15.4
All V	ehicles	1969	4.7	1969	4.7	0.719	25.8	LOS B	28.0	201.2	0.72	0.67	0.72	21.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Ave Service Pe		of Queue Distance m	Prop. E Queued S	Effective top Rate					
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
All Pe	edestrians	421	54.4	LOS E			0.95	0.95					

Site: 103 [3. Moore St / Bigge St - Future Base AM Peak]

♦♦ Network: N101 [Future Base AM Peak]

Existing AM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	Turn	Demand	Flows	Arrival	Flows	Deg.	Average	Level of	95% Bac	k of	Prop.	Effective	Aver. /	Avera
ID						Satn	Delay	Service	Queu		Queued	Stop	No.	e
		Total		Total	HV				Vehicles Di			Rate	Cycles S	
South	. Diag	veh/h e St (S)	%	veh/h	%	v/c	sec		veh	m				km/
	L2	95		95	4.4	0.457	0.0	LOS A	6.0	48.7	0.00	0.07	0.22	24
1			1.1		1.1		8.6		6.8		0.22	0.27		34.
2	T1	1096	2.2		2.2	0.457	3.4	LOS A	6.8	48.7	0.19	0.20	0.19	36.
3	R2	274	1.9	274	1.9	0.452	18.3	LOS B	8.7	61.7	0.58	0.74	0.58	29.
Appro	bach	1464	2.1	1464	2.1	0.457	6.5	LOS A	8.7	61.7	0.26	0.31	0.26	33.
East:	Moore	St (E)												
4	L2	71	4.5	71	4.5	0.214	48.7	LOS D	3.5	25.8	0.89	0.74	0.89	19
5	T1	87	61.4	87	61.4	0.449	48.4	LOS D	5.8	59.7	0.94	0.76	0.94	16
6	R2	20	31.6	20	31.6	0.449	52.0	LOS D	5.8	59.7	0.94	0.76	0.94	16
Appro	bach	178	35.5	178	35.5	0.449	48.9	LOS D	5.8	59.7	0.92	0.75	0.92	17.
North	: Bigge	e St (N)												
7	L2	12	0.0	12	0.0	0.283	12.3	LOS A	8.2	59.0	0.42	0.38	0.42	37.
8	T1	355	3.9	355	3.9	0.283	7.8	LOS A	8.2	59.0	0.42	0.38	0.42	38.
9	R2	59	0.0	59	0.0	0.235	15.6	LOS B	1.4	9.8	0.41	0.66	0.41	27.
Appro	bach	425	3.2	425	3.2	0.283	9.0	LOS A	8.2	59.0	0.42	0.42	0.42	37.
West	· Moore	e St (W)												
10	L2	147	2.1	147	2.1	0.439	51.0	LOS D	7.8	55.5	0.94	0.79	0.94	9.
11	T1	84	47.5	84	47.5	0.367	44.8	LOS D	5.5	50.8	0.90	0.74	0.90	20.
12	R2	22	4.8	22	4.8	0.367	48.1	LOS D	5.5	50.8	0.90	0.74	0.90	15
Appro		254	17.4	254	17.4	0.439	48.7	LOS D	7.8	55.5	0.92	0.77	0.92	14
All Ve	ehicles	2321	6.5	2321	6.5	0.457	14.8	LOS B	8.7	61.7	0.41	0.41	0.41	26

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	estrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		verage Back Pedestrian ped	of Queue Distance m	Prop. Queued S	Effective Stop Rate
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
All Pe	edestrians	421	54.4	LOS E			0.95	0.95

Site: 104 [4. Moore St / George St - Future Base AM Peak]

♦ Network: N101 [Future Base AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Back Queue		Prop. Queued	Effective Stop	Aver No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis veh	tance m		Rate	Cycles \$	Speed km/h
East:	Moore	Street (E))											
4	L2	49	29.8	49	29.8	0.308	43.9	LOS D	3.6	31.8	0.92	0.74	0.92	16.1
5	T1	117	29.7	117	29.7	0.308	40.3	LOS C	3.7	32.5	0.92	0.73	0.92	14.4
Appro	oach	166	29.7	166	29.7	0.308	41.4	LOS C	3.7	32.5	0.92	0.73	0.92	14.9
North	: Geor	ge Street (N)											
7	L2	88	13.1	88	13.1	0.227	36.7	LOS C	3.5	27.3	0.84	0.74	0.84	15.4
8	T1	261	2.8	261	2.8	0.314	33.7	LOS C	5.8	41.3	0.86	0.69	0.86	20.5
9	R2	53	4.0	53	4.0	0.121	35.7	LOS C	2.0	14.6	0.82	0.72	0.82	18.1
Appro	oach	402	5.2	402	5.2	0.314	34.6	LOS C	5.8	41.3	0.85	0.71	0.85	19.2
West	: Moore	e Street (V	V)											
11	T1	238	12.4	238	12.4	0.246	5.7	LOS A	3.9	29.4	0.29	0.31	0.29	22.5
12	R2	82	1.3	82	1.3	0.246	10.2	LOS A	3.9	29.4	0.35	0.39	0.35	28.7
Appro	oach	320	9.5	320	9.5	0.246	6.9	LOS A	3.9	29.4	0.31	0.33	0.31	25.0
All Ve	ehicles	888	11.4	888	11.4	0.314	25.9	LOS B	5.8	41.3	0.67	0.58	0.67	18.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Peo	lestrians						
Mov	Description	Demand	Average	Level of Ave				ffective
ID	Description	Flow ped/h	Delay sec	Service Pe	edestrian ped	Distance m	Queued St	op Rate
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	edestrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:12 AM Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 101 [1. Elizabeth St / George St - Future Base PM Peak]

Existing PM Peak Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	t Perform	ance ·	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles I veh	Distance m		Rate	Cycles S	Speed km/h
East:	Elizab	eth St (E)												
4	L2	143	5.1	143	5.1	0.695	36.4	LOS C	17.1	122.2	0.94	0.82	0.94	12.7
5	T1	368	0.9	368	0.9	0.695	36.9	LOS C	17.1	122.2	0.96	0.84	0.98	15.2
6	R2	71	6.0	71	6.0	0.695	49.1	LOS D	9.3	66.4	1.00	0.88	1.08	17.8
Appro	oach	582	2.5	582	2.5	0.695	38.3	LOS C	17.1	122.2	0.96	0.84	0.98	15.1
North	n: Geor	ge St (N)												
7	L2	27	7.7	27	7.7	0.142	26.3	LOS B	2.7	19.7	0.64	0.56	0.64	19.6
8	T1	420	4.0	420	4.0	0.706	27.4	LOS B	18.0	129.5	0.83	0.74	0.83	18.0
9	R2	102	0.0	102	0.0	0.706	31.6	LOS C	18.0	129.5	0.86	0.77	0.86	20.6
Appro	oach	549	3.4	549	3.4	0.706	28.1	LOS B	18.0	129.5	0.82	0.73	0.82	18.6
West	: Elizal	beth St (W))											
10	L2	179	1.2	179	1.2	0.426	17.6	LOS B	10.0	74.7	0.57	0.59	0.57	26.6
11	T1	214	12.3	214	12.3	0.426	14.2	LOS A	10.0	74.7	0.57	0.59	0.57	14.5
12	R2	178	1.2	178	1.2	0.426	21.8	LOS B	4.9	34.6	0.86	0.77	0.86	11.3
Appro	oach	571	5.4	571	5.4	0.426	17.6	LOS B	10.0	74.7	0.66	0.65	0.66	18.9
All Ve	ehicles	1702	3.8	1702	3.8	0.706	28.1	LOS B	18.0	129.5	0.81	0.74	0.82	17.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay		Average Back Pedestrian	of Queue Distance	Prop. I Queued S	Effective Stop Rate					
		ped/h	sec		ped	m							
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
All Pe	destrians	421	44.4	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:19 AM

Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 102 [2. Elizabeth St / Bigge St - Future Base PM Peak]

♦♦ Network: N102 [Future Base PM Peak]

Existing PM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	Turn	Demand	Flowe	Arrival	Flows	Deg.	Average		95% Ba	nck of	Prop.	Effective	Aver. A	Averad
ID	Turri	Demanu	1 10 10 3	Anivai	1 10 103	Satn	Delay	Service	Que		Queued	Stop	No.	e
		Total		Total	ΗV				Vehicles [Distance		Rate	Cycles S	speed
	-	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		e St (S)												
1	L2	366	2.3	366	2.3	0.322	12.6	LOS A	9.0	63.9	0.54	0.68	0.54	25.8
2	T1	575	2.2	575	2.2	0.524	9.4	LOS A	15.3	109.2	0.56	0.52	0.56	32.9
3	R2	37	2.9	37	2.9	0.524	12.8	LOS A	15.3	109.2	0.56	0.52	0.56	31.5
Appro	oach	978	2.3	978	2.3	0.524	10.7	LOS A	15.3	109.2	0.56	0.58	0.56	30.9
East:	Elizab	eth St (E)												
4	L2	87	1.2	87	1.2	0.401	42.4	LOS C	6.2	43.9	0.92	0.77	0.92	8.1
5	T1	163	3.9	163	3.9	0.401	39.1	LOS C	6.2	43.9	0.92	0.75	0.92	8.3
6	R2	20	52.6	20	52.6	0.401	42.9	LOS D	5.7	43.6	0.92	0.75	0.92	17.9
Appro	oach	271	6.6	271	6.6	0.401	40.5	LOS C	6.2	43.9	0.92	0.76	0.92	9.2
North	: Bigge	e St (N)												
7	L2	31	0.0	31	0.0	0.113	6.5	LOS A	1.2	8.2	0.18	0.23	0.18	36.0
8	T1	392	2.4	392	2.4	0.347	5.3	LOS A	4.4	31.6	0.27	0.29	0.27	31.9
9	R2	38	0.0	38	0.0	0.347	9.7	LOS A	4.4	31.6	0.31	0.31	0.31	31.0
Appro	oach	460	2.1	460	2.1	0.347	5.8	LOS A	4.4	31.6	0.27	0.28	0.27	32.2
West	: Elizat	oeth St (W)											
10	L2	74	0.0	74	0.0	0.224	41.8	LOS C	3.1	21.9	0.89	0.74	0.89	19.0
11	T1	131	22.6	131	22.6	0.528	39.7	LOS C	7.2	58.7	0.94	0.78	0.94	15.2
12	R2	31	0.0	31	0.0	0.528	43.1	LOS D	7.2	58.7	0.94	0.78	0.94	11.2
Appro	oach	235	12.6	235	12.6	0.528	40.8	LOS C	7.2	58.7	0.93	0.77	0.93	16.1
All Ve	ehicles	1943	4.1	1943	4.1	0.528	17.3	LOS B	15.3	109.2	0.58	0.56	0.58	25.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - P	Pedestrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
All Pe	destrians	421	44.4	LOS E			0.94	0.94

Site: 103 [3. Moore St / Bigge St - Future Base PM Peak]

♦♦ Network: N102 [Future Base PM Peak]

Existing PM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

		Perform												
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Queu		Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles D veh	istance m		Rate	Cycles S	Speed km/h
Sout	h: Bigg	e St (S)	70	VCII/II	70	V/C	360	_	Ven		_	_		K11/11
1	L2	100	3.2	100	3.2	0.376	11.5	LOS A	6.6	48.0	0.35	0.39	0.35	28.5
2	T1	760	4.0	760	4.0	0.376	6.2	LOS A	6.6	48.0	0.31	0.31	0.31	30.6
3	R2	174	6.7	174	6.7	0.503	27.0	LOS B	6.3	46.6	0.77	0.79	0.77	25.8
Appr	oach	1034	4.4	1034	4.4	0.503	10.2	LOS A	6.6	48.0	0.39	0.40	0.39	28.3
East:	Moore	St (E)												
4	L2	224	0.0	224	0.0	0.503	39.3	LOS C	9.6	67.2	0.92	0.80	0.92	21.7
5	T1	79	66.7	79	66.7	0.255	32.2	LOS C	3.5	36.9	0.83	0.68	0.83	19.9
6	R2	9	0.0	9	0.0	0.255	35.6	LOS C	3.5	36.9	0.83	0.68	0.83	19.9
Appr	oach	313	16.8	313	16.8	0.503	37.4	LOS C	9.6	67.2	0.89	0.77	0.89	21.3
North	n: Bigge	e St (N)												
7	L2	12	0.0	12	0.0	0.501	16.2	LOS B	15.9	113.0	0.61	0.55	0.61	35.6
8	T1	578	1.5	578	1.5	0.501	11.6	LOS A	15.9	113.0	0.61	0.55	0.61	35.2
9	R2	60	1.8	60	1.8	0.179	17.5	LOS B	1.4	10.2	0.50	0.68	0.50	25.6
Appr	oach	649	1.5	649	1.5	0.501	12.3	LOS A	15.9	113.0	0.60	0.56	0.60	34.4
West	: Moore	e St (W)												
10	L2	118	4.5	118	4.5	0.278	36.3	LOS C	4.8	34.9	0.85	0.75	0.85	12.1
11	T1	60	63.2	60	63.2	0.278	36.6	LOS C	4.8	34.9	0.88	0.71	0.88	22.1
12	R2	19	0.0	19	0.0	0.278	40.1	LOS C	3.2	32.0	0.88	0.71	0.88	17.3
Appr	oach	197	21.9	197	21.9	0.278	36.8	LOS C	4.8	34.9	0.86	0.73	0.86	16.8
All Ve	ehicles	2193	6.9	2193	6.9	0.503	17.1	LOS B	15.9	113.0	0.57	0.53	0.57	26.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	estrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		verage Back ^D edestrian ped	of Queue Distance m	Prop. Queued S	Effective Stop Rate
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
All Pe	edestrians	421	44.4	LOS E			0.94	0.94

Site: 104 [4. Moore St / George St - Future Base PM Peak]

Existing PM Peak

Site Category: (None) Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Bacl Queue		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis veh	stance m		Rate	Cycles \$	Speed km/h
East:	Moore	Street (E)												
4	L2	57	11.1	57	11.1	0.356	42.3	LOS C	4.9	40.6	0.91	0.75	0.91	16.5
5	T1	162	33.1	162	33.1	0.356	38.9	LOS C	4.9	40.6	0.91	0.74	0.91	14.7
Appro	bach	219	27.4	219	27.4	0.356	39.8	LOS C	4.9	41.8	0.91	0.74	0.91	15.2
North	: Geor	ge Street (N)											
7	L2	104	8.1	104	8.1	0.131	20.0	LOS B	2.9	21.6	0.61	0.67	0.61	21.4
8	T1	613	2.9	613	2.9	0.392	18.6	LOS B	10.8	77.7	0.69	0.59	0.69	26.3
9	R2	161	1.3	161	1.3	0.190	20.5	LOS B	4.6	32.6	0.63	0.70	0.63	23.5
Appro	oach	878	3.2	878	3.2	0.392	19.2	LOS B	10.8	77.7	0.67	0.62	0.67	25.3
West	: Moore	e Street (N	/)											
11	T1	118	27.7	118	27.7	0.232	19.6	LOS B	4.0	31.6	0.60	0.52	0.60	11.6
12	R2	52	0.0	52	0.0	0.232	24.9	LOS B	4.0	31.6	0.66	0.59	0.66	18.9
Appro	bach	169	19.3	169	19.3	0.232	21.2	LOS B	4.0	31.6	0.61	0.54	0.61	14.5
All Ve	ehicles	1266	9.6	1266	9.6	0.392	23.0	LOS B	10.8	77.7	0.70	0.63	0.70	22.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Demand	Average	Level of Ave	erage Back o	f Queue	Prop. E	ffective
ID	Description	Flow	Delay	Service Pe		Distance	Queued St	
		ped/h	sec		ped	m		
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	edestrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:19 AM Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 101 [1. Elizabeth St / George St - Future Base + **Development AM Peak]**

♦ Network: N101 [Future Base + Development AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	t Performa	ance	- Vehi	cles									
Mov ID	Turn	Demand F	lows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Queu		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total		Total	HV				Vehicles D			Rate	Cycles S	
East [.]	Elizab	veh/h eth St (E)	%	veh/h	%	v/c	sec		veh	m				km/h
4	L2	100	7.4	100	7.4	0.603	40.4	LOS C	11.5	83.5	0.94	0.80	0.94	11.7
5	 T1	174	1.8	174	1.8	0.603	37.7	LOS C	11.5	83.5	0.95	0.81	0.95	15.0
6	R2	74	5.7	74	5.7	0.603	51.5	LOS D	4.3	31.3	0.99	0.83	1.05	16.9
Appro	oach	347	4.2	347	4.2	0.603	41.4	LOS C	11.5	83.5	0.95	0.81	0.97	14.8
North	: Geor	ge St (N)												
7	L2	61	6.9	61	6.9	0.128	33.2	LOS C	2.3	16.7	0.79	0.71	0.79	16.4
8	T1	242	5.2	242	5.2	0.606	32.2	LOS C	12.8	93.1	0.86	0.75	0.86	16.4
9	R2	80	1.3	80	1.3	0.606	35.7	LOS C	12.8	93.1	0.86	0.75	0.86	19.3
Appro	oach	383	4.7	383	4.7	0.606	33.1	LOS C	12.8	93.1	0.85	0.75	0.85	17.0
West	: Elizat	oeth St (W)												
10	L2	201	2.1	201	2.1	0.440	13.9	LOS A	10.1	73.5	0.49	0.54	0.49	29.0
11	T1	412	6.9	412	6.9	0.440	11.3	LOS A	10.1	73.5	0.56	0.59	0.56	16.4
12	R2	162	1.9	162	1.9	0.440	16.2	LOS B	7.2	52.3	0.69	0.67	0.69	15.1
Appro	oach	775	4.6	775	4.6	0.440	13.0	LOS A	10.1	73.5	0.57	0.59	0.57	21.2
All Ve	ehicles	1505	4.5	1505	4.5	0.606	24.7	LOS B	12.8	93.1	0.73	0.68	0.73	17.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued S	Effective Stop Rate					
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94					
All Pe	destrians	421	44.4	LOS E			0.94	0.94					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:31 AM

Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 102 [2. Elizabeth St / Bigge St - Future Base + Development AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	ement	t Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Ba Que	ue	Prop. Queued	Effective Stop	Aver. A No.	e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles [veh	Distance m		Rate	Cycles S	Speed km/h
Sout	h: Bigg	e St (S)	/0	VEH/H	/0	v/C	360	_	Ven		_		_	K11/11
1	L2	217	4.9	217	4.9	0.356	16.0	LOS B	10.8	78.4	0.53	0.59	0.53	24.6
2	T1	711	3.4	711	3.4	0.753	22.8	LOS B	29.1	209.1	0.77	0.73	0.77	26.2
3	R2	94	1.1	94	1.1	0.753	29.3	LOS C	29.1	209.1	0.84	0.78	0.84	22.3
Appr	oach	1021	3.5	1021	3.5	0.753	21.9	LOS B	29.1	209.1	0.73	0.71	0.73	25.6
East	: Elizab	eth St (E)												
4	L2	49	4.3	49	4.3	0.212	40.2	LOS C	4.6	34.0	0.82	0.70	0.82	8.5
5	T1	97	8.7	97	8.7	0.212	39.2	LOS C	4.6	34.0	0.84	0.70	0.84	8.2
6	R2	23	27.3	23	27.3	0.212	45.6	LOS D	3.3	26.2	0.86	0.70	0.86	17.1
Appr	oach	169	9.9	169	9.9	0.212	40.4	LOS C	4.6	34.0	0.83	0.70	0.83	10.0
North	n: Bigge	e St (N)												
7	L2	23	0.0	23	0.0	0.104	10.0	LOS A	1.7	12.0	0.26	0.28	0.26	32.9
8	T1	340	1.5	340	1.5	0.317	13.4	LOS A	6.9	48.8	0.42	0.39	0.42	25.0
9	R2	18	0.0	18	0.0	0.317	19.6	LOS B	6.9	48.8	0.49	0.44	0.49	23.4
Appr	oach	381	1.4	381	1.4	0.317	13.5	LOS A	6.9	48.8	0.42	0.39	0.42	25.5
Wes	t: Elizal	oeth St (W)											
10	L2	144	3.6	144	3.6	0.324	43.1	LOS D	6.9	49.9	0.86	0.77	0.86	18.7
11	T1	195	14.1	195	14.1	0.757	47.9	LOS D	16.8	127.6	0.98	0.90	1.06	13.4
12	R2	99	2.1	99	2.1	0.757	51.4	LOS D	16.8	127.6	0.98	0.90	1.06	9.7
Appr	oach	438	7.9	438	7.9	0.757	47.1	LOS D	16.8	127.6	0.94	0.85	0.99	14.5
All V	ehicles	2009	4.6	2009	4.6	0.757	27.4	LOS B	29.1	209.1	0.72	0.68	0.74	21.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Ave Service Pe		of Queue Distance m	Prop. I Queued S	Effective top Rate					
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95					
All Pe	destrians	421	54.4	LOS E			0.95	0.95					

Site: 103 [3. Moore St / Bigge St - Future Base + Development AM Peak]

♦ Network: N101 [Future Base + Development AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Mov	ement	t Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Bac Queue		Prop. Queued	Effective Stop	Aver. A No.	e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis veh	stance m		Rate	Cycles S	Speed km/h
Sout	h: Bigg	e St (S)	/0	Ven/m	70	v/c	360		Ven		_		_	K11/11
1	L2	95	1.1	95	1.1	0.459	8.6	LOS A	6.9	49.0	0.22	0.27	0.22	34.5
2	T1	1101	2.2	1101	2.2	0.459	3.4	LOS A	6.9	49.0	0.19	0.20	0.19	36.8
3	R2	274	1.9	274	1.9	0.452	18.3	LOS B	8.7	61.7	0.58	0.74	0.58	29.5
Appr	oach	1469	2.1	1469	2.1	0.459	6.5	LOS A	8.7	61.7	0.26	0.31	0.26	33.1
East	: Moore	e St (E)												
4	L2	71	4.5	71	4.5	0.214	48.7	LOS D	3.5	25.8	0.89	0.74	0.89	19.4
5	T1	87	61.4	87	61.4	0.449	48.4	LOS D	5.8	59.7	0.94	0.76	0.94	16.0
6	R2	20	31.6	20	31.6	0.449	52.0	LOS D	5.8	59.7	0.94	0.76	0.94	16.0
Appr	oach	178	35.5	178	35.5	0.449	48.9	LOS D	5.8	59.7	0.92	0.75	0.92	17.4
Nort	n: Bigge	e St (N)												
7	L2	12	0.0	12	0.0	0.283	12.4	LOS A	8.2	59.4	0.42	0.38	0.42	37.9
8	T1	355	3.9	355	3.9	0.283	7.8	LOS A	8.2	59.4	0.42	0.38	0.42	38.8
9	R2	59	0.0	59	0.0	0.236	14.7	LOS B	1.5	10.2	0.43	0.66	0.43	27.8
Appr	oach	425	3.2	425	3.2	0.283	8.9	LOS A	8.2	59.4	0.42	0.42	0.42	37.4
Wes	t: Moor	e St (W)												
10	L2	147	2.1	147	2.1	0.439	51.0	LOS D	7.8	55.5	0.94	0.79	0.94	9.5
11	T1	84	47.5	84	47.5	0.367	44.8	LOS D	5.5	50.8	0.90	0.74	0.90	20.3
12	R2	22	4.8	22	4.8	0.367	48.1	LOS D	5.5	50.8	0.90	0.74	0.90	15.4
Appr	oach	254	17.4	254	17.4	0.439	48.7	LOS D	7.8	55.5	0.92	0.77	0.92	14.4
All V	ehicles	2326	6.5	2326	6.5	0.459	14.8	LOS B	8.7	61.7	0.41	0.41	0.41	26.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	lestrians						
Mov ID	Description	Demand Flow	Average Delay	Level of Ave Service Pe	destrian	Distance	Prop. I Queued S	Effective top Rate
D 4	0 11 5 11 0 1	ped/h	sec	1.00 5	ped	m	0.05	
P1	South Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P2	East Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P3	North Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
P4	West Full Crossing	105	54.4	LOS E	0.3	0.3	0.95	0.95
All Pe	edestrians	421	54.4	LOS E			0.95	0.95

Site: 104 [4. Moore St / George St - Future Base + **Development AM Peak]**

♦ Network: N101 [Future Base + Development AM Peak]

Existing AM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Move	ement	Perform	ance ·	- Vehio	cles									
Mov ID	Turn	Demand	Flows	Arrival		Deg. Satn	Average Delay	Level of Service	95% Bac Queue		Prop. Queued	Effective Stop	Aver. A No.	∖verag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Dis veh	stance m		Rate	Cycles S	Speed km/h
East:	Moore	Street (E)												
4	L2	49	29.8	49	29.8	0.327	45.0	LOS D	3.7	32.3	0.93	0.75	0.93	15.8
5	T1	117	29.7	117	29.7	0.327	41.4	LOS C	3.8	33.0	0.93	0.73	0.93	14.2
Appro	bach	166	29.7	166	29.7	0.327	42.5	LOS C	3.8	33.0	0.93	0.74	0.93	14.7
North	: Geor	ge Street (N)											
7	L2	88	13.1	88	13.1	0.203	34.9	LOS C	3.4	26.5	0.82	0.73	0.82	15.9
8	T1	301	2.4	301	2.4	0.338	32.3	LOS C	6.6	47.3	0.85	0.69	0.85	21.0
9	R2	53	4.0	53	4.0	0.112	34.0	LOS C	2.0	14.2	0.80	0.71	0.80	18.6
Appro	bach	442	4.8	442	4.8	0.338	33.0	LOS C	6.6	47.3	0.84	0.70	0.84	19.8
West	: Moore	e Street (W	/)											
11	T1	238	12.4	238	12.4	0.254	6.7	LOS A	4.3	32.4	0.33	0.34	0.33	21.1
12	R2	82	1.3	82	1.3	0.254	11.3	LOS A	4.3	32.4	0.38	0.41	0.38	27.7
Appro	bach	320	9.5	320	9.5	0.254	7.9	LOS A	4.3	32.4	0.34	0.35	0.34	23.7
All Ve	hicles	928	10.9	928	10.9	0.338	26.0	LOS B	6.6	47.3	0.68	0.59	0.68	19.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pe	destrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Ave Service Pe		of Queue Distance m	Prop. E Queued St	ffective top Rate
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	destrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:31 AM Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 101 [1. Elizabeth St / George St - Future Base + **Development PM Peak]**

♦ Network: N102 [Future Base + Development PM Peak]

Existing PM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Mov	ement	t Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. A No.	Averag e
		Total		Total	HV				Vehicles [Rate	Cycles S	
East.	Elizah	veh/h eth St (E)	%	veh/h	%	v/c	sec		veh	m				km/h
4	L2	143	5.1	143	5.1	0.697	41.3	LOS C	14.3	102.6	0.97	0.85	0.99	11.5
5	T1	374	0.8	374	0.8	0.697	37.8	LOS C	14.3	102.0	0.97	0.85	1.00	15.0
6	R2	71		71	0.8 6.0			LOS C						
-			6.0			0.697	41.3		12.6	89.9	0.96	0.85	1.00	19.7
Appro	bach	587	2.5	587	2.5	0.697	39.1	LOS C	14.3	102.6	0.96	0.85	1.00	14.9
North	: Geor	ge St (N)												
7	L2	27	7.7	27	7.7	0.139	23.8	LOS B	2.7	19.7	0.59	0.53	0.59	20.8
8	T1	460	3.7	460	3.7	0.695	24.7	LOS B	18.5	132.6	0.79	0.71	0.79	19.0
9	R2	102	0.0	102	0.0	0.695	28.9	LOS C	18.5	132.6	0.83	0.75	0.83	21.6
Appro	oach	589	3.2	589	3.2	0.695	25.4	LOS B	18.5	132.6	0.79	0.71	0.79	19.6
West	: Elizat	peth St (W))											
10	L2	179	1.2	179	1.2	0.455	19.9	LOS B	11.0	82.1	0.62	0.62	0.62	25.3
11	T1	214	12.3	214	12.3	0.455	16.5	LOS B	11.0	82.1	0.62	0.62	0.62	13.4
12	R2	218	1.0	218	1.0	0.499	23.4	LOS B	6.4	44.9	0.89	0.79	0.89	10.7
Appro	oach	611	5.0	611	5.0	0.499	19.9	LOS B	11.0	82.1	0.72	0.68	0.72	17.3
All Ve	ehicles	1787	3.6	1787	3.6	0.697	28.0	LOS B	18.5	132.6	0.82	0.75	0.83	17.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pe	destrians						
Mov ID	Description	Demand Flow	Average Delay		Average Back Pedestrian	of Queue Distance	Prop. I Queued S	Effective Stop Rate
		ped/h	sec		ped	m		
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
All Pe	destrians	421	44.4	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:38 AM

Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Site: 102 [2. Elizabeth St / Bigge St - Future Base + Development PM Peak]

♦♦ Network: N102 [Future Base + Development PM Peak]

Existing PM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

		Perform							0.50/					
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Quei		Prop. Queued	Effective Stop	Aver. A No.	verag e
ID.		Total	ΗV	Total	ΗV	Jaur	Delay	Service	Vehicles E		Queueu	Rate	Cycles S	
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	h: Bigge	e St (S)												
1	L2	366	2.3	366	2.3	0.322	12.6	LOS A	9.0	63.9	0.54	0.68	0.54	25.8
2	T1	585	2.2	585	2.2	0.532	9.5	LOS A	15.7	112.0	0.57	0.52	0.57	32.9
3	R2	37	2.9	37	2.9	0.532	12.9	LOS A	15.7	112.0	0.57	0.52	0.57	31.4
Appro	oach	988	2.2	988	2.2	0.532	10.8	LOS A	15.7	112.0	0.56	0.58	0.56	30.9
East:	Elizab	eth St (E)												
4	L2	87	1.2	87	1.2	0.401	42.4	LOS C	6.2	43.9	0.92	0.77	0.92	8.1
5	T1	163	3.9	163	3.9	0.401	39.1	LOS C	6.2	43.9	0.92	0.75	0.92	8.3
6	R2	20	52.6	20	52.6	0.401	42.9	LOS D	5.7	43.6	0.92	0.75	0.92	17.9
Appro	oach	271	6.6	271	6.6	0.401	40.5	LOS C	6.2	43.9	0.92	0.76	0.92	9.2
North	n: Bigge	e St (N)												
7	L2	31	0.0	31	0.0	0.114	6.5	LOS A	1.2	8.3	0.18	0.23	0.18	36.0
8	T1	392	2.4	392	2.4	0.349	5.3	LOS A	4.4	31.6	0.27	0.29	0.27	31.9
9	R2	38	0.0	38	0.0	0.349	9.7	LOS A	4.4	31.6	0.31	0.31	0.31	31.0
Appro	oach	460	2.1	460	2.1	0.349	5.8	LOS A	4.4	31.6	0.27	0.29	0.27	32.2
West	: Elizat	eth St (W)											
10	L2	74	0.0	74	0.0	0.224	41.8	LOS C	3.1	21.9	0.89	0.74	0.89	19.0
11	T1	131	22.6	131	22.6	0.528	39.7	LOS C	7.2	58.7	0.94	0.78	0.94	15.2
12	R2	31	0.0	31	0.0	0.528	43.1	LOS D	7.2	58.7	0.94	0.78	0.94	11.2
Appro	oach	235	12.6	235	12.6	0.528	40.8	LOS C	7.2	58.7	0.93	0.77	0.93	16.1
All Ve	ehicles	1954	4.0	1954	4.0	0.532	17.3	LOS B	15.7	112.0	0.58	0.56	0.58	25.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pec	lestrians						
Mov ID	Description	Demand Flow	Average Delay	Level of Ave Service Pe	destrian l	Distance	Prop. I Queued S	Effective top Rate
D 4	0 1 5 1 0 .	ped/h	sec	100 5	ped	m	0.04	0.04
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
All Pe	edestrians	421	44.4	LOS E			0.94	0.94

Site: 103 [3. Moore St / Bigge St - Future Base + Development PM Peak]

♦♦ Network: N102 [Future Base + Development PM Peak]

Existing PM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Network User-Given Cycle Time)

Mov	emen	t Perform	ance	- Vehi	cles _									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Ba Queu	ie	Prop. Queued	Effective Stop	Aver. A No.	e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles D veh	istance m		Rate	Cycles S	Speed km/h
Sout	h: Bigg	e St (S)	70	VEII/II	/0	v/C	360	_	Ven		_		_	KI11/11
1	L2	100	3.2	100	3.2	0.384	11.5	LOS A	6.8	49.3	0.35	0.39	0.35	28.5
2	T1	780	3.9	780	3.9	0.384	6.3	LOS A	6.8	49.3	0.32	0.32	0.32	30.5
3	R2	174	6.7	174	6.7	0.503	27.0	LOS B	6.3	46.6	0.77	0.79	0.77	25.8
Appr	oach	1054	4.3	1054	4.3	0.503	10.2	LOS A	6.8	49.3	0.39	0.40	0.39	28.3
East	Moore	e St (E)												
4	L2	224	0.0	224	0.0	0.503	39.3	LOS C	9.6	67.2	0.92	0.80	0.92	21.7
5	T1	79	66.7	79	66.7	0.255	32.2	LOS C	3.5	36.9	0.83	0.68	0.83	19.9
6	R2	9	0.0	9	0.0	0.255	35.6	LOS C	3.5	36.9	0.83	0.68	0.83	19.9
Appr	oach	313	16.8	313	16.8	0.503	37.4	LOS C	9.6	67.2	0.89	0.77	0.89	21.3
North	n: Bigge	e St (N)												
7	L2	12	0.0	12	0.0	0.501	16.2	LOS B	15.9	113.0	0.61	0.55	0.61	35.6
8	T1	578	1.5	578	1.5	0.501	11.6	LOS A	15.9	113.0	0.61	0.55	0.61	35.2
9	R2	60	1.8	60	1.8	0.184	17.6	LOS B	1.4	10.2	0.51	0.68	0.51	25.6
Appr	oach	649	1.5	649	1.5	0.501	12.3	LOS A	15.9	113.0	0.60	0.56	0.60	34.4
West	: Moor	e St (W)												
10	L2	118	4.5	118	4.5	0.278	36.3	LOS C	4.8	34.9	0.85	0.75	0.85	12.1
11	T1	60	63.2	60	63.2	0.278	36.6	LOS C	4.8	34.9	0.88	0.71	0.88	22.1
12	R2	19	0.0	19	0.0	0.278	40.1	LOS C	3.2	32.0	0.88	0.71	0.88	17.3
Appr	oach	197	21.9	197	21.9	0.278	36.8	LOS C	4.8	34.9	0.86	0.73	0.86	16.8
All V	ehicles	2213	6.8	2213	6.8	0.503	17.0	LOS B	15.9	113.0	0.57	0.53	0.57	26.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pec	lestrians						
Mov ID	Description	Demand Flow	Average Delay	Level of Ave Service Pe	destrian l	Distance	Prop. I Queued S	Effective top Rate
D 4	0 1 5 1 0 .	ped/h	sec	100 5	ped	m	0.04	0.04
P1	South Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P2	East Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P3	North Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
P4	West Full Crossing	105	44.4	LOS E	0.3	0.3	0.94	0.94
All Pe	edestrians	421	44.4	LOS E			0.94	0.94

Site: 104 [4. Moore St / George St - Future Base + **Development PM Peak]**

♦ Network: N102 [Future Base + Development PM Peak]

Existing PM Peak

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 100 seconds (Site User-Given Cycle Time)

Move	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival		Deg. Satn	Average Delay	Level of Service	95% Bac Queue		Prop. Queued	Effective Stop	Aver. A No.	∖verag e
		Total veh/h	HV %	Total veh/h	HV %	v/c	sec		Vehicles Di veh	stance m		Rate	Cycles S	Speed km/h
East:	Moore	Street (E)												
4	L2	57	11.1	57	11.1	0.397	44.4	LOS D	5.0	41.8	0.93	0.76	0.93	16.0
5	T1	162	33.1	162	33.1	0.397	41.0	LOS C	5.0	41.8	0.93	0.75	0.93	14.2
Appro	bach	219	27.4	219	27.4	0.397	41.9	LOS C	5.0	43.0	0.93	0.75	0.93	14.7
North	: Geor	ge Street (N)											
7	L2	104	8.1	104	8.1	0.126	18.7	LOS B	2.8	20.8	0.58	0.66	0.58	22.1
8	T1	623	2.9	623	2.9	0.381	17.3	LOS B	10.6	76.0	0.67	0.57	0.67	26.9
9	R2	161	1.3	161	1.3	0.182	19.3	LOS B	4.4	31.3	0.60	0.70	0.60	24.1
Appro	bach	888	3.2	888	3.2	0.381	17.8	LOS B	10.6	76.0	0.65	0.61	0.65	25.9
West	: Moore	e Street (W	/)											
11	T1	118	27.7	118	27.7	0.246	21.9	LOS B	4.2	33.8	0.63	0.54	0.63	10.8
12	R2	52	0.0	52	0.0	0.246	27.6	LOS B	4.2	33.8	0.70	0.61	0.70	17.8
Appro	bach	169	19.3	169	19.3	0.246	23.6	LOS B	4.2	33.8	0.65	0.56	0.65	13.6
All Ve	hicles	1277	9.5	1277	9.5	0.397	22.7	LOS B	10.6	76.0	0.70	0.63	0.70	22.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

	ement Performance - Ped	estrians						
Mov		Demand	Average	Level of Ave				Effective
ID	Description	Flow	Delay	Service Pe	edestrian	Distance	Queued S	top Rate
		ped/h	sec		ped	m		
P1	South Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P2	East Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P3	North Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
P4	West Full Crossing	53	44.3	LOS E	0.1	0.1	0.94	0.94
All Pe	edestrians	211	44.3	LOS E			0.94	0.94

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Processed: Tuesday, 7 January 2020 11:33:38 AM Project: Z:\PCI - PROJECT WORK FILES\NSW\Binah Group - 26 Elizabeth Street (Lot 2), Liverpool\Analysis\200107 - SIDRA - Network Model - SIDRA Modelling - Coordination.sip8

Attachment 3 Car Park Review

ptc.- 26

191119 -

		REV	DATE	COMMENT	DRAWN	REVIEWED	REV	DATE	COMMENT	DRAWN	REVIEWED		PROJECT:	DRAWING TITLE:	
		7	08/08/19	FOR INFORMATION	EL	AU							PROJECT.	DRAWING TITLE.	
ptc.	Suite 102, 506 Miller Street, Cammeray NSW 2062		6	09/11/18	FOR INFORMATION	HL	AU							26 ELIZABETH STREET,	CAR PARK REVIEW
		5	06/11/18	FOR INFORMATION	HL	AU	12	20/11/19	9 FOR INFORMATION	EL	sw				
	t +61 2 8920 0800	4	14/09/18	FOR INFORMATION	sc	AU	11	17/10/19	9 FOR INFORMATION	IJ	AU		LIVERPOOL BASEN		
	ptcconsultants.co	3	30/08/18	FOR INFORMATION	SH/HL	AU	10	15/10/19	9 FOR INFORMATION	SC/HL	AU			BASEMENT 4	
		2	-	NOT ISSUED	-	-	9		NOT ISSUED	-	-				
		1	-	NOT ISSUED	-	-	8	22/08/19	9 FOR INFORMATION	EL	AU			1	

COMI	MENTS	A3
B99 Vehicle (Realistic min Overall Length Overall Body Height Min Body Ground Clearand Track Width Lock-to-lock time Curb to Curb Turning Radiu	.e 0.	200m 940m 878m 272m 840m 00s 250m
B85 Vehicle (Realistic min r Overall Length Overall Width Overall Body Height Min Body Ground Clearanc Track Width Lock-to-lock time Curb to Curb Turning Radiu	e 0. 1. 4.	910m 870m 421m 159m 770m 00s 750m
	2.4mx 5.4m car sp	ace
	2.5m x 5.4m car sp	oace
SMALL CAR	2.3m x 5.0m car spa	ace
CLIENT: BINAH GR	OUP	
DRG. #: B4-001		
PROJECT #: 2436A	REV: '	12
SCALE: 1:300		

2 P03.1

		REV	DATE	COMMENT	DRAWN	REVIEWED	REV	DATE	COMMENT	DRAWN	REVIEWED		PROJECT:	DRAWING TITLE:
			08/08/19	FOR INFORMATION	EL	AU							FROJECT.	DRAWING TITLE.
	Suite 102, 506 Miller Street, Cammeray NSW 2062	6	09/11/18	FOR INFORMATION	HL	AU							26 ELIZABETH STREET,	CAR PARK REVIEW
	Camineray 14344 2002	5	06/11/18	FOR INFORMATION	HL	AU	12	20/11/19	FOR INFORMATION	EL	sw		-	
ptc.	t +61 2 8920 0800	4	14/09/18	FOR INFORMATION	sc	AU	11	17/10/19	FOR INFORMATION	IJ	AU		LIVERPOOL	
P.c.,	ptcconsultants.co	3	30/08/18	FOR INFORMATION	SH/HL	AU	10	15/10/19	FOR INFORMATION	SC/HL	AU			BASEMENT 3
		2	06/08/18	FOR INFORMATION	HL	AU	9	-	NOT ISSUED	-	-			
		1	25/07/18	FOR INFORMATION	HL	AU	8	22/08/19	FOR INFORMATION	EL	AU			

COM	MENTS	A3
B99 Vehicle (Realistic min Overall Length Overall Body Height Min Body Ground Clearand Track Width Lock-to-lock time Curb to Curb Turning Radii	ce 1 1 4	.200m .940m .878m .272m .840m .00s .250m
B85 Vehicle (Realistic min r Overall Length Overall Width Overall Body Height Min Body Ground Clearanc Track Width Lock-to-lock time Curb to Curb Turning Radiu	e 0. 1. 4.	910m 870m 421m 159m 770m 00s 750m
	2.4mx 5.4m car sp	ace
	2.5m x 5.4m car sj	oace
SMALL CAR	2.3m x 5.0m car sp	bace
 CLIENT: BINAH GR	OUP	
DRG. #: B3-001		
PROJECT #: 2436A	REV:	12
SCALE: 1:300		

261

ptc.

191119 -

		REV	DATE	COMMENT	DRAWN	REVIEWED	REV	DATE	COMMENT	DRAWN	REVIEWED	PROJECT:	DRAWING TITLE:			
	Suite 102, 506 Miller Street, Cammeray NSW 2062	7	08/08/19	FOR INFORMATION	EL	AU						PROJECT.	DRAWING TILE.			
ptc.		6	09/11/18	FOR INFORMATION	HL	AU						26 ELIZABETH STREET,	CAR PARK REVIEW			
		5	06/11/18	FOR INFORMATION	HL	AU	12	20/11/19	FOR INFORMATION	EL	sw					
	t +61 2 8920 0800	4	14/09/18	FOR INFORMATION	sc	AU	11	17/10/19	FOR INFORMATION	n	AU	LIVERPOOL				
	ptcconsultants.co				3	30/08/18	FOR INFORMATION	SH/HL	AU	10	15/10/19	FOR INFORMATION	SC/HL	AU		BASEMENT 2
		2	06/08/18	FOR INFORMATION	HL	AU	9	-	NOT ISSUED	-						
		1	25/07/18	FOR INFORMATION	HL	AU	8	22/08/19	FOR INFORMATION	EL	AU					

COMI	MENTS	A3
B99 Vehicle (Realistic min Overall Length Overall Width Overall Body Height Min Body Ground Clearand Track Width Lock-to-lock time Curb to Curb Turning Radiu	5. 1. 1. 0. 1. 4.	200m 940m 878m 272m 840m 00s 250m
B85 Vehicle (Realistic min r Overall Length Overall Width Overall Body Height Min Body Ground Clearanc Track Width Lock-to-lock time Curb to Curb Turning Radiu	e 0.1 1.7 4.0	910m 970m 921m 959m 770m 90s 750m
	2.4mx 5.4m car spa	ce
	2.5m x 5.4m car spa	ace
SMALL CAR	2.3m x 5.0m car spa	ce
CLIENT: BINAH GR	OUP	
DRG. #: B2-001		10
PROJECT #: 2436A SCALE: 1:300	REV:	12
I:300		

- 91119 -

		REV	DATE	COMMENT	DRAWN	REVIEWED	REV	DATE	COMMENT	DRAWN	REVIEWED		PROJECT:	DRAWING TITLE:	
	Suite 102, 506 Miller Street, Cammeray NSW 2062	7	09/11/18	FOR INFORMATION	SC/HL	AU]	PROJECT.	DRAWING IIILE.	
ptc.		6	06/11/18	FOR INFORMATION	SC/HL	AU							26 ELIZABETH STREET,	CAR PARK REVIEW	
		5	14/09/18	FOR INFORMATION	SC/HL	AU	12	20/11/19	FOR INFORMATION	EL	sw				
	t +61 2 8920 0800	4	30/08/18	FOR INFORMATION	SH/HL	AU	11	17/10/19	FOR INFORMATION	ມ	AU		LIVERPOOL		
	ptcconsultants.co		3	08/08/18	FOR INFORMATION	HL	AU	10	15/10/19	FOR INFORMATION	SC/HL	AU			BASEMENT 1
		2	25/07/18	FOR INFORMATION	HL	AU	9	22/08/19	FOR INFORMATION	EL	AU				
		1	12/07/18	FOR INFORMATION	HL	AU	8	08/08/19	FOR INFORMATION	EL	AU				

BINAH GROUP CLIENT: DRG. #: GF-101 REV: **12** PROJECT #: 2436A

SCALE:

MRV - Medium Rigid Vehicle MRV - Medium Rigid Vehicle Overall Length Overall Width Overall Body Height Min Body Ground Clearance Track Width Lock-to-lock time Curb to Curb Turning Radius

8.800m 2.500m 3.633m 0.428m 2.500m 4.00s 10.000m

Α3

TYPICAL

Please note the following compliance requirements:

	Height Clearance:	car park ac bicycles. 2.5m abov 4.5m when 10.54m su) throughout all areas of the ccessible to vehicles and re accessible and shared bays rever access is required for bstation service vehicle (and irance envelope)					
	Sight Splays:	2.5m x 2m provided (avoids visu	plays in the form of a right-angled triangle to be AS2890.1). Ensure design Jal obstructions in sight splay landscaping, tall alls etc.)					
	Parking Spaces:	kept clear including h Ensure tha module do	The parking envelopes shown, must be kept clear of all physical obstructions, including height clearance reductions. Ensure that grades within the parking module do not exceed 1:20 (1:40 for accessible bays).					
	Accessible Spaces:	AS2890.6. with adjac 5.4m), to b	gned in accordance with i.e, standard parking space ent shared bay (2.4m x be installed as per AS2890.6 nts (bollard and markings).					
	Motorcycle Parkin	Motorcycl	e bays to be designed as .2m envelope (AS2890.1).					
1	Bicycle Parking:	envelope o an aisle wi	Bicycle spaces are to allow for a envelope of 500mm by 1800mm, with an aisle width of 2000mm for locker storage, or 1500mm for racks.					
	CLIENT: BIN	IAH GRO	OUP					
	DRG. #: GF -	102						
	PROJECT #: 243	86A	REV: 12					
	SCALE: 1:30	00						

SRV - Small Rigid Vehicle Overall Length Overall Width Overall Body Height Min Body Ground Clearance Track Width Lock-to-lock time Curb to Curb Turning Radius

6.400m 2.330m 3.500m 0.398m 2.330m 4.00s 7.100m

TYPICAL

Please note the following compliance requirements:

	Height Clearance:	car park ac bicycles. 2.5m abov 4.5m when 10.54m su) throughout all areas of the ccessible to vehicles and e accessible and shared bays rever access is required for bstation service vehicle (and rance envelope)
And the second	Sight Splays:	2.5m x 2m provided (a avoids visu	plays in the form of a right-angled triangle to be AS2890.1). Ensure design Ial obstructions in sight splay landscaping, tall alls etc.)
	Parking Spaces:	kept clear including h Ensure tha	g envelopes shown, must be of all physical obstructions, leight clearance reductions. t grades within the parking not exceed 1:20 (1:40 for bays).
	Accessible Spaces:	AS2890.6. with adjac 5.4m), to b	gned in accordance with i.e, standard parking space ent shared bay (2.4m x be installed as per AS2890.6 nts (bollard and markings).
MERO	Motorcycle Parkin	Motorcycle	e bays to be designed as 2m envelope (AS2890.1).
DENT	Bicycle Parking:	envelope o an aisle wi	ices are to allow for a of 500mm by 1800mm, with dth of 2000mm for locker 1500mm for racks.
	CLIENT: BIN	AH GRO	DUP
	DRG. #: GF -	103	
	PROJECT #: 243	6A	REV: 12
	SCALE: 1:30	00	

A3

Toyota Coast & Trailer Overall Length Overall Body Height Min Body Ground Clearance Max Track Width Lock-to-lock time Wall to Wall Turning Radius

TYPICAL

Please note the following compliance requirements:

「ないたい」としていたいであるというない	Height Clearance:	car park a bicycles. 2.5m abov 4.5m whe 10.54m su	 h) throughout all areas of the accessible to vehicles and ve accessible and shared bays erever access is required for ubstation service vehicle (and arance envelope) 				
A LO MANAGANA AND AND AND AND AND AND AND AND AND	Sight Splays:	2.5m x 2n provided (avoids vis	plays in the form of a n right-angled triangle to be (AS2890.1). Ensure design ual obstructions in sight splay e landscaping, tall ralls etc.)				
COLO MANAGAMAN AND AND AND AND AND AND AND AND AND A	Parking Spaces:	kept clear including Ensure tha	ng envelopes shown, must be of all physical obstructions, height clearance reductions. at grades within the parking o not exceed 1:20 (1:40 for bays).				
	Accessible Spaces:	AS2890.6. with adjac 5.4m), to	igned in accordance with i.e, standard parking space cent shared bay (2.4m x be installed as per AS2890.6 ents (bollard and markings).				
	Motorcycle Parkin						
			e bays to be designed as 2m envelope (AS2890.1).				
	Bicycle Parking:	envelope an aisle w	aces are to allow for a of 500mm by 1800mm, with idth of 2000mm for locker r 1500mm for racks.				
	CLIENT: BIN	AH GRO	OUP				
	DRG. #: GF-	107					
	PROJECT #: 243	6A	REV: 12				
	SCALE: 1:30	00					

Toyota HiAce Minibus (with Trailer) V2 Overall Length Overall Body Height Min Body Ground Clearance Max Track Width Lock-to-lock time Curb to Curb Turning Radius

2.100m 5.00s 6.200m	9.400n 1.880n 2.945n	n n
	5.00s	ſ

TYPICAL

Please note the following compliance requirements:

	Height Clearance:	car park a bicycles. 2.5m abov 4.5m whe 10.54m su	a) throughout all areas of the ccessible to vehicles and we accessible and shared bays rever access is required for ubstation service vehicle (and arance envelope)
Contraction of the second second	Sight Splays:	2.5m x 2n provided (avoids vis	plays in the form of a n right-angled triangle to be (AS2890.1). Ensure design ual obstructions in sight splay e landscaping, tall ralls etc.)
	Parking Spaces:	kept clear including l Ensure tha	ng envelopes shown, must be of all physical obstructions, height clearance reductions. at grades within the parking o not exceed 1:20 (1:40 for bays).
	Accessible Spaces:	AS2890.6. with adjac 5.4m), to	igned in accordance with i.e, standard parking space cent shared bay (2.4m x be installed as per AS2890.6 ents (bollard and markings).
R	Motorcycle Parkin	Motorcycl	e bays to be designed as 2m envelope (AS2890.1).
TV	Bicycle Parking:	envelope an aisle w	aces are to allow for a of 500mm by 1800mm, with idth of 2000mm for locker r 1500mm for racks.
	CLIENT: BIN	AH GRO	OUP
	DRG. #: GF-	108	
	PROJECT #: 243	6A	REV: 12

1:300

A3

		REV	DATE	COMMENT	DRAWN	REVIEWED	REV	DATE	COMMENT	DRAWN	REVIEWED	PROJECT:	DRAWING TITLE:	
ptc.		7		NOT ISSUED	-	-						PROJECT.	DRAWING IIILE.	
	Suite 102, 506 Miller Street, Cammeray NSW 2062	6		NOT ISSUED	-	-						26 ELIZABETH STREET,	VERTICAL CLEARANCE ASSES	
		Camilleray NSW 2002	Camineray NSW 2002	5	22/08/19	FOR INFORMATION	EL	AU	12	20/11/1	FOR INFORMATION	EL	sw	·
	t +61 2 8920 0800	4	06/08/19	FOR INFORMATION	EL	AU	11	17/10/19	FOR INFORMATION	n	AU	LIVERPOOL		
	ptcconsultants.co	3	09/11/18	FOR INFORMATION	HL	AU	10	15/10/19	FOR INFORMATION	SC/HL	AU		SECTION - PODIUM CAR PAI	
		ptcconsultants.co	ptcconsultants.co	ptcconsultants.co	2	06/11/18	FOR INFORMATION	HL	AU	9	-	NOT ISSUED	-	-
		1	14/09/18	FOR INFORMATION	HL	AU	8		NOT ISSUED		-			

		COMM	JENTS		A3
		earance (2004) th y Height round Clearance	2	0.1 1.8 4.0	000m 140m 100m 20m 240m
	CLIENT:	BINAH GRO	DUP		
ESSMENT		S-102			
DV	PROJECT #:		REV :	1	2
RK		1:200	I \ L V .	I	

	COMM	MENTS	A3
	HRV - Heavy Rigid Vehicle		
	12.5		
	HRV - Heavy Rigid Vehicle Overall Length Overall Width Overall Body Height Min Body Ground Clearance Track Width	12.5 2.50 4.30 0.41 2.50	0m 0m 7m
	Lock-to-lock time Curb to Curb Turning Radius	6.00 12.5	s
	NOTE: The 10.54m substation servine modelled using a standard 12 assessment. It is noted that t 10mm at the entry to the loa that the substation service w is considered acceptable.	2.5m HRV for a conser here is a minor confli ding dock; however, §	ct of given
	A HRV has been used to dem Largest vehicle permitted to under general operation is a	access the loading do	ck
	CLIENT: BINAH GRO	DUP	
SSMENT	DRG. #: S-103		
то	PROJECT #: 2436A	REV: 1	12
	SCALE: 1:200		

B99 Vert Clearance (2004) Overall Length Overall Width Overall Body Height Min Body Ground Clearance Track Width Lock-to-lock time Curb to Curb Turning Radius

5.200m 1.940m 2.200m 0.120m 1.840m 4.00s 8.000m

	CLIENT:	BINAH GRO	OUP	
ESSMENT	DRG. #:	S-104		
PARK	PROJECT #:	2436A	REV:	12
	SCALE:	1:200		

Α3

		COMM	MENTS		A3
	Curb to Cur	earance (2004) gth y Height round Clearance time b Turning Radius		1.9 2.2 0.1	200m 940m 200m 340m 30s 300m
ESSMENT		BINAH GRO	JUP		
EJJIVIEINI		S-105	DE\/.		12
OFF AREA	PROJECT #:		REV:		
	SCALE:	1:200			

Attachment 4 Proposed On-street Parking Controls & Left-in/Leftout Access Arrangement

Attachment 5 Support Letter from Car Share Company

10/01/2020 Attention: Abdullah Uddin Senior Traffic Engineer PTC Consultants

Car Sharing for Liverpool

CarShare Australia would like to confirm our support for 3 GoGet carshare vehicles on site at 26 Elizabeth Street, Liverpool. Carsharing offers local residents and businesses access to a fleet of cars parked close to where they live and work for occasional use. The vehicles are parked in a dedicated location, called a pod, and are returned to that spot at the end of each trip.

Carsharing services operate to fill a mobility 'gap' that exists between private car ownership -which is inefficient, expensive and unsustainable- and public transport, walking and cycling which can generally suit most local transport needs. A carsharing service in this development will increase transport efficiencies in the area and encourage public transport use by residents and the surrounding community.

Carshare pods located within close proximity of key bus corridors and/or train/light rail lines, such as the proposed pod, experience the strongest uptake of carshare users because members enjoy the added convenience of being able to access a carshare to undertake their short-distance errands once alighted from main transport nodes. This is further encouraged by the assurance of a reserved car space (our pods) to return the carshare vehicle before members continue their journeys via the main transport lines again.

For the Liverpool LGA we estimate that 1 carshare vehicle can comfortably replace 10 private vehicles. This is based on available statistical data¹, our membership data and our Annual membership survey data. This number is supported by the NSW land and environment court rulings².

With our commitment to subsidise membership for tenants/residents of this development scheme, we expect even higher adoption rates of the service, thus allowing residents to no longer need to own private cars, to by extension to relieve pressure on the limited on-street parking. With these factors we would be supportive of 3 GoGet vehicles on site accessible to all GoGet members, causing this new development to bring a service to the larger Liverpool Community.

¹ 2016 Bureau of Statistics HTS Data

² 2016 Turner Architects v Botany Bay Council

² 2019 Freedom Development Group Pty Ltd v Randwick City Council

² 2019 Arkibis Pty Ltd t/a ARKHAUS v Randwick City Council

Overall, a car sharing program provides a reliable, convenient and affordable alternative to private car ownership. It has the following advantages:

- 1. Allows people to live car-free, and businesses to reduce underutilized vehicles;
- 2. Promotes alternative transport options such as public transport, cycling or walking;
- 3. Decreases car usage which improves local air quality and promotes local businesses;
- 4. Removes private cars from local streets and car parks freeing up parking.

Should you require further information please don't hesitate to contact me directly.

Yours sincerely,

Christopher Vanneste PhD Head of Locations and Partnerships GoGet CarShare <u>Chris@goget.com.au</u> 0404 863 228